ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Double exponential function - Wikipedia, the free encyclopedia

Double exponential function

From Wikipedia, the free encyclopedia

This article is about double exponential functions. For the double exponential distribution, see Laplace distribution.

A double exponential function is a constant raised to the power of an exponential function. The general formula is f(x) = a^{b^x}, which grows even faster than an exponential function. For example, if a = b = 10:

  • f(−1) ≈ 1.26
  • f(0) = 10
  • f(1) = 1010
  • f(2) = 10100 = googol
  • f(3) = 101000
  • f(100) = 1010100 = googolplex

Factorials grow faster than exponential functions, but much slower than double-exponential functions. Compare the hyper-exponential function and Ackermann function, which grow even faster.

Contents

[edit] Doubly exponential sequences

Aho and Sloane observed that several important integer sequences satisfy a recurrence in which each term is a constant plus the square of the previous term, and show that such sequences can be formed by rounding to the nearest integer the values of a doubly exponential function in which the middle exponent is two.[1] Integer sequences with this squaring behavior include

F(m) = 2^{2^m}+1
MM(p) = 2^{2^p-1}-1
s_n = \left\lfloor E^{2^{n+1}}+\frac12 \right\rfloor
where E ≈ 1.264084735305 is Vardi's constant.

More generally, if the nth value of an integer sequences is proportional to a double exponential function of n, Ionascu and Stanica call the sequence "almost doubly-exponential" and describe conditions under which it can be defined as the floor of a doubly-exponential sequence plus a constant.[2] Additional sequences of this type include

  • The prime numbers 2, 11, 1361, ... (sequence A051254 in OEIS)
a(n) = \left\lfloor A^{3^n}\right\rfloor
where A ≈ 1.306377883863 is Mills' constant.

[edit] Applications

[edit] Algorithmic complexity

In computational complexity theory, some algorithms take double-exponential time:

[edit] Number theory

Some number theoretical bounds are double exponential. Odd perfect numbers with n distinct prime factors are known to be at most

2^{4^n}

a result of Nielsen (2003).[5]

The largest known prime in the electronic era has grown roughly as a double exponential function of the year since Miller and Wheeler found a 79-digit prime on EDSAC1 in 1951.[6]

[edit] Theoretical biology

In population dynamics the growth of human population is sometimes supposed to be double exponential. Gurevich and Varfolomeyev[7] experimentally fit

N(y)=375.6\cdot 1.00185^{1.00737^{y-1000}}

where N(y) is the population in year y in millions.

[edit] Physics

In the Oscillator Toda model of self-pulsation, the logarithm of amplitude varies exponentially with time (for large amplitudes), thus the amplitude varies as double-exponential function of time.[8]

[edit] See also

[edit] References

  1. ^ Aho, A. V. & Sloane, N. J. A. (1973), “Some doubly exponential sequences”, Fibonacci Quarterly 11: 429–437, <http://www.research.att.com/~njas/doc/doubly.html> .
  2. ^ E. Ionascu and P. Stanica, "Effective asymptotics for some nonlinear recurrences and almost doubly-exponential sequences". Acta Mathematica Universitatis Comenianae Vol. LXXIII, 1 (2004), pp. 75–87.
  3. ^ Deepak Kapur, Paliath Narendran, Double-exponential complexity of computing a complete set of AC-unifiers. Proceedings of the Seventh Symposium on Logic in Computer Science (1992), pp. 11–21.
  4. ^ Jan Johannsen and Martin Lange, CTL+ is complete for double exponential time.
  5. ^ Pace P. Nielsen, An Upper Bound for Odd Perfect Numbers. INTEGERS: The Electronic Journal of Combinatorial Number Theory Vol. 3 (2003).
  6. ^ J. C. P. Miller D. J. Wheeler, "Large Prime Numbers" Nature 168 (1951), p. 838. [1]
  7. ^ Varfolomeyev, SD & Gurevich, KG, "The hyperexponential growth of the human population on a macrohistorical scale." Journal of Theoretical Biology, 212(3) (2001), p. 371.
  8. ^ D.Kouznetsov; J.-F.Bisson, J.Li, K.Ueda (2007). "Self-pulsing laser as oscillator Toda: Approximation through elementary functions". Journal of Physics A 40: 1–18. doi:10.1088/1751-8113/40/9/016. 
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -