ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
De Rham curve - Wikipedia, the free encyclopedia

De Rham curve

From Wikipedia, the free encyclopedia

In mathematics, a de Rham curve is a certain type of fractal curve. The Cantor function, Minkowski's question mark function, the Lévy C curve, the blancmange curve and the Koch curve are all special cases of the general de Rham curve. The curve is named in honor of Georges de Rham.

Contents

[edit] Construction

Consider a pair of contracting maps

d_0:\mathbb{R}^2 \to \mathbb{R}^2

and

d_1:\mathbb{R}^2 \to \mathbb{R}^2

By the Banach fixed point theorem, these have fixed points p0 and p1 respectively. Let x be a real number in the interval x \in [0,1], having binary expansion

x = \sum_{k=1}^\infty b_k 2^{-k}

Here, each bk is understood to be an integer, 0 or 1. Consider the map

c_x:\mathbb{R}^2 \to \mathbb{R}^2

given by

c_x = d_{b_1} \circ d_{b_2} \circ \cdots \circ d_{b_k} \circ \cdots

where \circ denotes function composition. It can be shown that each cx will map the common basin of attraction of d0 and d1 to a single point p_x\in \mathbb{R}^2. The collection of points px, parameterized by a single real parameter x, is known as the de Rham curve.

[edit] Properties

When the fixed points are paired such that

d0(p1) = d1(p0)

then it may be shown that the resulting curve px is a continuous function of x. When the curve is continuous, it is not in general differentiable. The self-symmetries of all of the de Rham curves are given by the monoid that describes the symmetries of the infinite binary tree or Cantor set. This so-called period-doubling monoid is a subset of the modular group.

[edit] Example: Césaro curve

Cesaro curve for a=0.3+i0.3
Cesaro curve for a=0.3+i0.3
Cesaro curve for a=0.5+i0.5
Cesaro curve for a=0.5+i0.5

Let z=u+iv\in \mathbb{C} and let a\in\mathbb{C} be a constant such that | a | < 1 and | 1 − a | < 1. Consider then the maps

d0(z) = az

and

d1(z) = a + (1 − a)z

For the value of a = (1 + i) / 2, the resulting curve is the Lévy C curve. For general values of a, the curve is often known as the Césaro curve or the Césaro-Faber curve.

[edit] Example: Koch curve

Koch-Peano curve for a=0.6+i0.37
Koch-Peano curve for a=0.6+i0.37
Koch-Peano curve for a=0.6+i0.45
Koch-Peano curve for a=0.6+i0.45

The Koch curve and the Peano curve may be obtained by

d_0(z) = a\overline{z}

and

d_1(z) = a + (1-a)\overline{z}

where \overline{z} denotes the complex conjugate of z. The classic Koch curve is obtained by setting

a=\frac{1}{2} + i\frac{\sqrt{3}}{6}

while the Peano curve corresponds to a = (1 + i) / 2.

[edit] Example: General affine maps

Generic affine de Rham curve
Generic affine de Rham curve
Generic affine de Rham curve
Generic affine de Rham curve
Generic affine de Rham curve
Generic affine de Rham curve
Generic affine de Rham curve
Generic affine de Rham curve

The Cesaro-Faber and Peano-Koch curves are both special cases of the general case of a pair of affine linear transformations on the complex plane. By fixing one endpoint of the curve at 0 and the other at one, the general case is obtained by iterating on the two transforms

d_0=\left( \begin{matrix} 1&0&0 \\ 
0 & \alpha&\delta \\ 
0&\beta&\epsilon \end{matrix}\right)

and

d_1=\left( \begin{matrix} 1&0&0 \\ 
\alpha & 1-\alpha&\zeta \\ 
\beta&-\beta&\eta \end{matrix}\right)

Being affine transforms, these transforms act on a point (u,v) of the 2-D plane by acting on the vector

\left( \begin{matrix} 1 \\ u \\ v \end{matrix}\right)

The midpoint of the curve can be seen to be located at (u,v) = (α,β); the other four parameters may be varied to create a large variety of curves.

[edit] Example: Minkowski's question mark function

Minkowski's question mark function is generated by the pair of maps

d_0(z) = \frac{z}{z+1}

and

d_1(z)= \frac{1}{z+1}

[edit] See also

[edit] References

  • Georges de Rham, On Some Curves Defined by Functional Equations (1957), reprinted in Classics on Fractals, ed. Gerald A. Edgar (Addison-Wesley, 1993), pp. 285–298.
  • Linas Vepstas, Symmetries of Period-Doubling Maps, (2004). (A general exploration of the modular group symmetry in fractal curves.)


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -