ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Complete graph - Wikipedia, the free encyclopedia

Complete graph

From Wikipedia, the free encyclopedia

Complete graph

K7, a complete graph with 7 vertices
Vertices n
Edges n(n − 1) / 2
Automorphisms n!
This box: view  talk  edit

In the mathematical field of graph theory, a complete graph is a simple graph in which every pair of distinct vertices is connected by an edge. The complete graph on n vertices has n vertices and n(n − 1) / 2 edges, and is denoted by Kn. It is a regular graph of degree n − 1. All complete graphs are their own cliques. They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices.

A complete graph with n-nodes represents the edges of an n-simplex. Geometrically K3 relates to a triangle, K4 a tetrahedron, K5 a pentachoron, etc.

K1 through K4 are all planar. Kuratowski's theorem says that a planar graph cannot contain K5 (or the complete bipartite graph K3,3) as a minor. Since Kn includes Kn − 1, no complete graph Kn with n greater than or equal to 5 is planar.

Since a complete graph contains all n(n − 1) / 2 possible edges, it gives a quadratic worst-case upper bound on the number of connections in large connected systems like social and computer networks.

Complete graphs on n vertices, for n between 1 and 8, are shown below along with the numbers of connections:

K1:0 K2:1 K3:3 K4:6
K5:10 K6:15 K7:21 K8:28

[edit] See Also

[edit] External links

Look up complete graph in Wiktionary, the free dictionary.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -