ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Combination - Wikipedia, the free encyclopedia

Combination

From Wikipedia, the free encyclopedia

In combinatorial mathematics, a combination is an un-ordered collection of unique sizes. (An ordered collection is called a permutation.) Given S, the set of all possible unique elements, a combination is a subset of the elements of S. The order of the elements in a combination is not important (two lists with the same elements in different orders are considered to be the same combination). Also, the elements cannot be repeated in a combination (every element appears uniquely once); this is often referred to as "without replacement/repetition". This is because combinations are defined by the elements contained in them, thus the set {1,1,2} is the same as {2,1,1}. For example, from a 52-card deck any 5 cards can form a valid combination (a hand). The order of the cards doesn't matter and there can be no repetition of cards.

A k-combination (or k-subset) is a subset with k elements. The number of k-combinations (each of size k) from a set S with n elements (size n) is the binomial coefficient (also known as the "choose function"):

 C^n_k = {n \choose k} = \frac{n!}{k!(n-k)!}.

where n is the number of objects from which you can choose and k is the number to be chosen, and n! denotes the factorial.

As an example, the number of five-card hands possible from a standard fifty-two card deck is:

 {52 \choose 5} = \frac{n!}{k!(n-k)!} = \frac{52!}{5!(52-5)!} = \frac{52!}{5!47!} = 2598960.

The number of combinations with repetition can be calculated as:

{{(n + k - 1)!} \over {k!(n - 1)!}} = {{n + k - 1} \choose {k}} = {{n + k - 1} \choose {n - 1}}

For example, if you have ten types of donuts (n) on a menu to choose from and you want three donuts (k) there are (10 + 3 − 1)! / 3!(10 − 1)! = 220 ways to choose (see also multiset).

A combination is a special case of a partition of a set; specifically, a partition into two sets of size k and n − k.

Since it is impractical to calculate n! if the value of n is very large, a more efficient algorithm is

 {n \choose k} = \frac { ( n - 0 ) }{ (k - 0) } \times \frac { ( n - 1 ) }{ (k - 1) } \times \frac { ( n - 2 ) }{ (k - 2) } \times \frac { ( n - 3 ) }{ (k - 3) } \times \cdots \times \frac { ( n - (k - 1) ) }{ (k - (k - 1)) }.

Example:

 {52 \choose 5} = \frac { 52 }{ 5 } \times \frac { 51 }{ 4 } \times \frac { 50 }{ 3 } \times \frac { 49 }{ 2 } \times \frac { 48 }{ 1 } = 2598960.

You get the same result for nk as for k. Therefore, when k  is more than half of n, it may be easier to compute using nk in place of k.

[edit] See also

[edit] External links


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -