ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Cofactor (linear algebra) - Wikipedia, the free encyclopedia

Cofactor (linear algebra)

From Wikipedia, the free encyclopedia

In linear algebra, the cofactor describes a particular construction that is useful for calculating both the determinant and inverse of square matrices. Specifically the cofactor of an entry of a matrix is the signed minor of that entry.

Contents

[edit] Informal approach to minors and cofactors

Finding the minors of a matrix is a multi-step process. First, choose the an entry aij from the matrix. Then cross out the terms that lie in the equivalent row i and column j. Next, rewrite the matrix without the marked entries. Finally, obtain the determinant of this new matrix. This determinant is termed the minor Mij for entry aij. Once the minor has been obtained, the cofactor can be determined by multiplying the minor Mij by ( − 1)i + j where i and j are the row and column numbers that correspond to the minor Mij.

[edit] Definition

If A is a square matrix, then the minor entry of aij is denoted by Mij and is defined to be the determinant of the submatrix that remains after the i-th row and the j-th column are deleted from A. The number ( − 1)i + jMij is denoted by Cij and is called the cofactor of aij.

[edit] Example

Given the matrix

B = \begin{bmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33} \\
\end{bmatrix}

suppose we wish to find the cofactor C23. The minor M23 is the determinant of the above matrix with row 2 and column 3 removed.

 M_{23} = \begin{vmatrix}
b_{11} & b_{12} & \Box \\
\Box & \Box & \Box \\
b_{31} & b_{32} & \Box \\
\end{vmatrix} yields  M_{23} = \begin{vmatrix}
b_{11} & b_{12} \\
b_{31} & b_{32} \\
\end{vmatrix} = b_{11}b_{32} - b_{31}b_{12}

Using the given definition it follows that

\ C_{23} = (-1)^{2+3}(M_{23})
\ C_{23} = (-1)^{5}(b_{11}b_{32} - b_{31}b_{12})
\ C_{23} = b_{31}b_{12} - b_{11}b_{32}.

Note: the vertical lines are an equivalent notation for det(matrix)

[edit] Cofactor expansion

Main article: Laplace expansion

Given the n\times n matrix

 A = \begin{bmatrix}
    a_{11}  & a_{12} & \cdots &   a_{1n}   \\
    a_{21}  & a_{22} & \cdots &   a_{2n}   \\
  \vdots & \vdots & \ddots & \vdots \\ 
    a_{n1}  & a_{n2} & \cdots &  a_{nn}
\end{bmatrix}

The determinant of A (det(A)) can be written as the sum of its cofactors multiplied by the entries that generated them.

\ \det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + a_{3j}C_{3j} + ... + a_{nj}C_{nj}

(cofactor expansion along the jth column)

\ \det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + a_{i3}C_{i3} + ... + a_{in}C_{in}

(cofactor expansion along the ith row)

for any row i and column j in the matrix A.

[edit] Matrix of cofactors

The matrix of cofactors for an n by n matrix A is the matrix that contains the corresponding cofactor Cij in place of every entry aij in A

 A = \begin{bmatrix}
    a_{11}  & a_{12} & \cdots &   a_{1n}   \\
    a_{21}  & a_{22} & \cdots &   a_{2n}   \\
  \vdots & \vdots & \ddots & \vdots \\ 
    a_{n1}  & a_{n2} & \cdots &  a_{nn}
\end{bmatrix}

yields

 \begin{bmatrix}
    C_{11}  & C_{12} & \cdots &   C_{1n}   \\
    C_{21}  & C_{22} & \cdots &   C_{2n}   \\
  \vdots & \vdots & \ddots & \vdots \\ 
    C_{n1}  & C_{n2} & \cdots &  C_{nn}
\end{bmatrix}

where Cij is the cofactor that corresponds to aij.

[edit] Adjugate

Main article: Adjugate matrix

The adjugate matrix is the transpose of the matrix of cofactors and is very useful due to its relation to the inverse of A.

A^{-1} = \left ( \frac{1}{\det(A)} \right ) \mathrm{adj}(A)

The matrix of cofactors

 \begin{bmatrix}
    C_{11}  & C_{12} & \cdots &   C_{1n}   \\
    C_{21}  & C_{22} & \cdots &   C_{2n}   \\
  \vdots & \vdots & \ddots & \vdots \\ 
    C_{n1}  & C_{n2} & \cdots &  C_{nn}
\end{bmatrix}

when transposed becomes

 \mathrm{adj}(A) = \begin{bmatrix}
    C_{11}  & C_{21} & \cdots &   C_{n1}   \\
    C_{12}  & C_{22} & \cdots &   C_{n2}   \\
  \vdots & \vdots & \ddots & \vdots \\ 
    C_{1n}  & C_{2n} & \cdots &  C_{nn}
\end{bmatrix}.

[edit] See also

[edit] References

  • Anton, Howard, Chris, Rorres (2005), Elementary Linear Algebra (9th ed.), John Wiley and Sons, ISBN 0-471-66959-8 

[edit] External links


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -