ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Chebyshev function - Wikipedia, the free encyclopedia

Chebyshev function

From Wikipedia, the free encyclopedia

The Chebyshev function ψ(x), with x < 50
The Chebyshev function ψ(x), with x < 50
The Chebyshev function ψ(x) − x, for x < 10,000
The Chebyshev function ψ(x) − x, for x < 10,000
The Chebyshev function ψ(x) − x, for
The Chebyshev function ψ(x) − x, for x < 10\ \mathrm{million}

The Chebyshev function is either of two related functions. The first Chebyshev function ϑ(x) or θ(x) is given by

\vartheta(x)=\sum_{p\le x} \log p

with the sum extending over all prime numbers p that are less than x. The second Chebyshev function ψ(x) is defined by

 \psi(x) = \sum_{n \leq x} \Lambda(n),

where Λ is the von Mangoldt function. The Chebyshev function is often used in proofs related to prime numbers, because it is typically simpler to work with than the prime-counting function, π(x). Both functions are asymptotic to x, a statement equivalent to the prime number theorem.

Both functions are named in honour of Pafnuty Lvovich Chebyshev.

Contents

[edit] Relationships

The second Chebyshev function can be seen to be related to the first by writing it as

\psi(x)=\sum_{p\le x} k \log p

where k is the unique integer such that p^k\le x but pk + 1 > x. A more direct relationship is given by

\psi(x)=\sum_{n=1}^\infty \vartheta \left(x^{1/n}\right).

Note that this last sum has only a finite number of non-vanishing terms, as

\vartheta \left(x^{1/n}\right) = 0 for n > log2x.


The second Chebyshev function is the logarithm of the least common multiple of the integers from 1 to n.

\operatorname{lcm}(1,2,\dots n)=e^{\psi(n)}.

[edit] Asymptotics and bounds

Pierre Dusart[1] proved the following bounds for the Chebyshev functions:

\vartheta(p_k)\ge k\left( \ln k+\ln\ln k-1+\frac{\ln\ln k-2.0553}{\ln k}\right) for k' ≥ exp(22)
\vartheta(p_k)\le k\left( \ln k+\ln\ln k-1+\frac{\ln\ln k-2}{\ln k}\right) for k ≥ 198
\psi(p_k)\le k\left( \ln k+\ln\ln k-1+\frac{\ln\ln k-2}{\ln k}\right) + 1.43\sqrt x for k ≥ 198
|\vartheta(x)-x|\le0.006788\frac{x}{\ln x} for x ≥ 10,544,111
|\psi(x)-x|\le0.006409\frac{x}{\ln x} for x ≥ exp(22)
\psi(x)-\vartheta(x)<0.0000132\frac{x}{\ln x} for x ≥ exp(30)

Along with \psi(x)\ge \vartheta(x), this gives a good characterization of the behavior of these two functions.

[edit] The exact formula

In 1895, Hans Carl Friedrich von Mangoldt proved[2] an explicit expression for ψ(x) as a sum over the nontrivial zeros of the Riemann zeta function:

 \psi_0(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \frac{\zeta'(0)}{\zeta(0)} - \frac{1}{2} \log (1-x^{-2}).

Here ρ runs over the nontrivial zeros of the zeta function, and

 \psi_0(x) = \begin{cases} \psi(x) - \frac{1}{2} \Lambda(x) & x = p^m \mbox{, p prime, m an integer} \\ \psi(x) & \mbox{otherwise.} \end{cases}

From the Taylor series for the logarithm, the last term in the explicit formula can be understood as a summation of xω / ω over the trivial zeros of the zeta function, \omega = -2, -4, -6, \ldots, i.e.

 \sum_{k=1}^{\infty} \frac{x^{2k}}{2k} = \frac{1}{2} \log ( 1 - x^{-2} ).

[edit] Properties

A theorem due to Erhard Schmidt states that, for any real, positive K, there are values of x such that

\psi(x)-x < -K\sqrt{x}

and

\psi(x)-x > K\sqrt{x}

infinitely often.[3][4] On big-O notation, one may write the above as

\psi(x)-x \ne O\left(\sqrt{x}\right).

Hardy and Littlewood[5] prove the stronger result, that

\psi(x)-x \ne O\left(\sqrt{x}\log\log\log x\right).

[edit] Relation to primorials

The first Chebyshev function is the logarithm of the primorial of x, denoted x#:

\vartheta(x)=\sum_{p\le x} \log p=\log \prod_{p\le x} p = \log x\#.

This proves that the primorial x# is asymptotically equal to exp((1+o(1))x), where "o" is the little-o notation (see Big O notation) and together with the prime number theorem establishes the asymptotic behavior of pn#.

[edit] Relation to the prime-counting function

The Chebyshev function can be related to the prime-counting function as follows. Define

 \Pi(x) = \sum_{n \leq x} \frac{\Lambda(n)}{\log n}.

Then

 \Pi(x) = \sum_{n \leq x} \Lambda(n) \int_n^x \frac{dt}{t \log^2 t} + \frac{1}{\log x} \sum_{n \leq x} \Lambda(n) = \int_2^x \frac{\psi(t)\, dt}{t \log^2 t} + \frac{\psi(x)}{\log x}.

The transition from Π to the prime-counting function, π, is made through the equation

 \Pi(x) = \pi(x) + \frac{1}{2} \pi(x^{1/2}) + \frac{1}{3} \pi(x^{1/3}) + \cdots.

Certainly \pi(x) \leq x, so for the sake of approximation, this last relation can be recast in the form

 \pi(x) = \Pi(x) + O(\sqrt x).

[edit] The Riemann hypothesis

The Riemann hypothesis states that all nontrivial zeros of the zeta function have real part 1/2. In this case, |x^{\rho}|=\sqrt x, and it can be shown that

\sum_{\rho} \frac{x^{\rho}}{\rho} = O(\sqrt x \log^2 x).

By the above, this implies

 \pi(x) = \operatorname{li}(x) + O(\sqrt x \log x).

A good evidence that RH could be true comes from the fact proposed by Alain Connes and others, that if we differentiate V. Mangoldt formula respect to x make x = exp(u) manipulating we have the formula we have the "Trace formula" for the exponential of the Hamiltonian operator satisfying

 \zeta(1/2+i \hat H )|n \ge \zeta(1/2+iE_{n})=0,
 \sum_{n}e^{iu E_{n}}=Z(u)=e^{u/2}-e^{-u/2} \frac{d\psi _{0}}{du}-\frac{e^{u/2}}{e^{3u}-e^{u}} = \operatorname{Tr}(e^{iu\hat H }).

Where the "trigonometric sum" can be considered to be the trace of the operator (statistical mechanics)  e^{iu \hat H} ,which is only true if ρ = 1 / 2 + iE(n) .

Using the semiclassical approach the potential of H=T+V satisfies:

 \frac{Z(u)u^{1/2}}{\sqrt \pi }\sim \int_{-\infty}^{\infty}e^{i (uV(x)+ \pi /4 )}\,dx

with Z(u) → 0 as u → ∞.

[edit] Smoothing function

The smoothed Chebyshev function ψ1(x) − x2 / 2, for x < 106
The smoothed Chebyshev function ψ1(x) − x2 / 2, for x < 106

The smoothing function is defined as

\psi_1(x)=\int_0^x \psi(t)\,dt.

It can be shown that

\psi_1(x) \sim \frac{x^2}{2}.

[edit] Variational formulation

The Chebyshev function evaluated at x = exp(t) minimizes the functional

 J[f]=\int_{0}^{\infty}\frac{f(s)\zeta' (s+c)}{\zeta(s+c)(s+c)}\,ds-\int_{0}^{\infty}\!\!\!\int_{0}^{\infty} e^{-st}f(s)f(t)\,ds\,dt,

so

 f(t)= \psi (e^t)e^{-ct},\,

for c > 0.

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -