ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Cassini oval - Wikipedia, the free encyclopedia

Cassini oval

From Wikipedia, the free encyclopedia

Some Cassini ovals. The foci are (-1, 0) and (1, 0). The curves are annotated with the value of b2.
Some Cassini ovals. The foci are (-1, 0) and (1, 0). The curves are annotated with the value of b2.

In mathematics, a Cassini oval (named after mathematician-astronomer G. D. Cassini) is a set (or locus) of points in the plane such that each point p on the oval bears a special relation to two other, fixed points q1 and q2: the product of the distance from p to q1 and the distance from p to q2 is constant. That is, if we define the function dist(a,b) to be the distance from a point a to a point b, then all points on a Cassini oval satisfy the equation

\mbox{dist}(q_1, p)\mbox{dist}(q_2, p)=b^2\,

where b is a constant.

The points q1 and q2 are called the foci of the oval.

Cassini ovals are named after the astronomer Giovanni Domenico Cassini. Other names include Cassinian ovals and ovals of Cassini.

Suppose q1 is the point (a,0), and q2 is the point (-a,0). Then the points on the curve satisfy the equation

Failed to parse (Cannot write to or create math output directory): ((x-a)^2+y^2)((x+a)^2+y^2)=b^4


Equivalent equations include

(x2 + y2)2 − 2a2(x2y2) + a4 = b4

and

(x2 + y2 + a2)2 − 4a2x2 = b4

The equivalent polar equation is

r4 − 2a2r2cos2θ = b4a4

The shape of the oval depends on the ratio b/a. When b/a is greater than 1, the locus is a single, connected loop. When b/a is less than 1, the locus comprises two disconnected loops. When b/a is equal to 1, the locus is a lemniscate of Bernoulli.

If a = b the curve is rational, but in general the curve has a pair of double points at infinity in the complex projective plane, at x = ±i, y = 1, z = 0 and no other singularities, and is a plane algebraic curve of genus one, and hence birationally equivalent to an elliptic curve.

Rescaling by substituting ax for x and ay for y, we obtain a one-parameter family

(x^2+y^2+1)^2-4x^2=b^4 \,

which has j-invariant

j = 16 \frac{(b^8-16b^4+16)^3}{b^{16}(1-b^4)}.

Note that the definition of the curve is analogous to that of the ellipse, wherein the sum

\mbox{dist}(q_1, p)+\mbox{dist}(q_2, p)\,

is constant, rather than the product.

[edit] External links


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -