BIN3
From Wikipedia, the free encyclopedia
Bridging integrator 3
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | BIN3; MGC14978 | |||||||||||||
External IDs | OMIM: 606396 MGI: 1929883 HomoloGene: 5472 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 55909 | 57784 | ||||||||||||
Ensembl | ENSG00000147439 | ENSMUSG00000022089 | ||||||||||||
Uniprot | Q9NQY0 | Q3TC47 | ||||||||||||
Refseq | NM_018688 (mRNA) NP_061158 (protein) |
NM_021328 (mRNA) NP_067303 (protein) |
||||||||||||
Location | Chr 8: 22.53 - 22.56 Mb | Chr 14: 68.84 - 68.87 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Bridging integrator 3, also known as BIN3, is a human gene.[1]
The product of this gene is a member of the BAR domain protein family. The encoded protein is comprised solely of a BAR domain which is predicted to form coiled-coil structures and proposed to mediate dimerization, sense and induce membrane curvature, and bind small GTPases. BAR domain proteins have been implicated in endocytosis, intracellular transport, and a diverse set of other processes.[1]
[edit] References
[edit] Further reading
- Habermann B (2004). "The BAR-domain family of proteins: a case of bending and binding?". EMBO Rep. 5 (3): 250–5. doi: . PMID 14993925.
- Ren G, Vajjhala P, Lee JS, et al. (2006). "The BAR domain proteins: molding membranes in fission, fusion, and phagy.". Microbiol. Mol. Biol. Rev. 70 (1): 37–120. doi: . PMID 16524918.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149.
- Routhier EL, Burn TC, Abbaszade I, et al. (2001). "Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p.". J. Biol. Chem. 276 (24): 21670–7. doi: . PMID 11274158.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi: . PMID 14702039.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.". Genome Res. 16 (1): 55–65. doi: . PMID 16344560.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry.". Mol. Syst. Biol. 3: 89. doi: . PMID 17353931.