ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Bilinear map - Wikipedia, the free encyclopedia

Bilinear map

From Wikipedia, the free encyclopedia

In mathematics, a bilinear map is a function which is linear in both of its arguments. An example of such a map is multiplication of integers.

Contents

[edit] Definition

Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function

B : V × WX

such that for any w in W the map

vB(v, w )

is a linear map from V to X, and for any v in V the map

wB(v, w )

is a linear map from W to X.

In other words, if we hold the first entry of the bilinear map fixed, while letting the second entry vary, the result is a linear operator, and similarly if we hold the second entry fixed.

If V = W and we have B(v,w ) = B(w,v ) for all v,w in V, then we say that B is symmetric.

The case where X is F, and we have a bilinear form, is particularly useful (see for example scalar product, inner product and quadratic form).

The definition works without any changes if instead of vector spaces we use modules over a commutative ring R. It also can be easily generalized to n-ary functions, where the proper term is multilinear.

For the case of a non-commutative base ring R and a right module MR and a left module RN, we can define a bilinear map B : M × NT, where T is an abelian group, such that for any n in N, mB(m, n ) is a group homomorphism, and for any m in M, nB(m, n ) is a group homomorphism, and which also satisfies

B(mt, n ) = B(m, tn )

for all m in M, n in N and t in R.

[edit] Properties

A first immediate consequence of the definition is that B(x,y) = o whenever x=o or y=o. (This is seen by writing the null vector o as 0·o and moving the scalar 0 "outside", in front of B, by linearity.)

The set L(V,W;X) of all bilinear maps is a linear subspace of the space (viz. vector space, module) of all maps from V×W into X.

If V,W,X are finite-dimensional, then so is L(V,W;X). For X=F, i.e. bilinear forms, the dimension of this space is dimV×dimW (while the space L(V×W;K) of linear forms is of dimension dimV+dimW). To see this, choose a basis for V and W; then each bilinear map can be uniquely represented by the matrix B(ei,fj), and vice versa. Now, if X is a space of higher dimension, we obviously have dimL(V,W;X)=dimV×dimW×dimX.

[edit] Examples

  • Matrix multiplication is a bilinear map M(m,n) × M(n,p) → M(m,p).
  • If a vector space V over the real numbers R carries an inner product, then the inner product is a bilinear map V × VR.
  • In general, for a vector space V over a field F, a bilinear form on V is the same as a bilinear map V × VF.
  • If V is a vector space with dual space V*, then the application operator, b(f, v) = f(v) is a bilinear map from V* × V to the base field.
  • Let V and W be vector spaces over the same base field F. If f is a member of V* and g a member of W*, then b(v, w) = f(v)g(w) defines a bilinear map V × WF.
  • The cross product in R3 is a bilinear map R3 × R3R3.
  • Let B : V × WX be a bilinear map, and L : UW be a linear operator, then (v, u) → B(v, Lu) is a bilinear map on V × U
  • The null map, defined by B(v,w) = o for all (v,w) in V×W is the only map from V×W to X which is bilinear and linear at the same time. Indeed, if (v,w)∈V×W, then if B is linear, B(v,w) = B(v,o) + B(o,w) = o + o if B is bilinear.

[edit] See also


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -