See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Alexander's trick - Wikipedia, the free encyclopedia

Alexander's trick

From Wikipedia, the free encyclopedia

Alexander's trick, also known as the Alexander trick, is a basic result in geometric topology, named after J. W. Alexander.

Contents

[edit] Statement

Two homeomorphisms of the n-dimensional ball Dn which agree on the boundary sphere Sn − 1, are isotopic.

More generally, two homeomorphisms of Dn that are isotopic on the boundary, are isotopic.

[edit] Proof

Base case: every homeomorphism which fixes the boundary is isotopic to the identity relative to the boundary.

If f\colon D^n \to D^n satisfies f(x) = x \mbox{ for all } x \in  S^{n-1}, then an isotopy connecting f to the identity is given by

 J(x,t) = \begin{cases} tf(x/t), & \mbox{if } 0 \leq ||x|| < t, \\ x, & \mbox{if } t \leq ||x|| \leq 1. \end{cases}

Visually, you straighten it out from the boundary, squeezing f down to the origin. William Thurston calls this "combing all the tangles to one point".

The subtlety is that at t = 0, f "disappears": the germ at the origin "jumps" from an infinitely stretched version of f to the identity. Each of the steps in the homotopy could be smoothed (smooth the transition), but the homotopy (the overall map) has a singularity at (x,t) = (0,0). This underlines that the Alexander trick is a PL construction, but not smooth.

General case: isotopic on boundary implies isotopic

Now if f,g\colon D^n \to D^n are two homeomorphisms that agree on Sn − 1, then g − 1f is the identity on Sn − 1, so we have an isotopy J from the identity to g − 1f. The map gJ is then an isotopy from g to f.

[edit] Radial extension

Some authors use the term Alexander trick for the statement that every homeomorphism of Sn − 1 can be extended to a homeomorphism of the entire ball Dn.

However, this is much easier to prove than the result discussed above: it is called radial extension (or coning) and is also true piecewise-linearly, but not smoothly.

Concretely, let f\colon S^{n-1} \to S^{n-1} be a homeomorphism, then

 F\colon D^n \to D^n \mbox{ with } F(rx) = rf(x) \mbox{ for all } r \in [0,1] \mbox{ and } x \in S^{n-1}

defines a homeomorphism of the ball.

[edit] Exotic spheres

The failure of smooth radial extension and the success of PL radial extension yield exotic spheres via twisted spheres.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -