See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Adjunction space - Wikipedia, the free encyclopedia

Adjunction space

From Wikipedia, the free encyclopedia

In mathematics, an adjunction space is a common construction in topology where one topological space is attached or "glued" onto another. Specifically, let X and Y be a topological spaces with A a subspace of Y. Let f : AX be a continuous map (called the attaching map). One forms the adjunction space Xf Y by taking the disjoint union of X and Y and identifying x with f(x) for all x in A. Schematically,

X\cup_f Y = (X\amalg Y) / \{f(A) \sim A\}

Sometimes, the adjunction is written as X+\!_f \,Y. Intuitively, we think of Y as being glued onto X via the map f.

As a set, Xf Y consists of the disjoint union of X and (YA). The topology, however, is specified by the quotient construction. In the case where A is a closed subspace of Y one can show that the map XXf Y is a closed embedding and (YA) → Xf Y is an open embedding.

[edit] Examples

  • A common example of an adjunction space is given when Y is a closed n-ball (or cell) and A is the boundary of the ball, the (n−1)-sphere. Inductively attaching cells along their spherical boundaries to this space results in an example of a CW complex.
  • Adjunction spaces are also used to define connected sums of manifolds. Here, one first removes open balls from X and Y before attaching the boundaries of the removed balls along an attaching map.
  • If A is a space with one point then the adjunction is the wedge sum of X and Y.
  • If X is a space with one point then the adjunction is the quotient Y/A.

[edit] Categorical description

The attaching construction is an example of a pushout in the category of topological spaces. That is to say, the adjunction space is universal with respect to following commutative diagram:

Image:AdjunctionSpace-01.png

Here i is the inclusion map and φX, φY are the maps obtained by composing the quotient map with the canonical injections into the disjoint union of X and Y. One can form a more general pushout by replacing i with an arbitrary continuous map g — the construction is similar. Conversely, if f is also an inclusion the attaching construction is to simply glue X and Y together along their common subspace.

[edit] References

  • Stephen Willard, General Topology, (1970) Addison-Wesley Publishing Company, Reading Massachusetts. (Provides a very brief introduction.)
  • Adjunction space on PlanetMath


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -