See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Abel's test - Wikipedia, the free encyclopedia

Abel's test

From Wikipedia, the free encyclopedia

In mathematics, Abel's test (also known as Abel's criterion) is a method of testing for the convergence of an infinite series. The test is named after mathematician Niels Abel. There are two slightly different versions of Abel's test – one is used with series of real numbers, and the other is used with power series in complex analysis.

Contents

[edit] Abel's test in real analysis

Given two sequences of real numbers, {an} and {bn}, if the sequences satisfy

  •  \sum^{\infty}_{n=1}a_n converges

then the series

\sum^{\infty}_{n=1}a_n b_n

converges.

[edit] Abel's test in complex analysis

A closely related convergence test, also known as Abel's test, can often be used to establish the convergence of a power series on the boundary of its circle of convergence. Specifically, Abel's test states that if


\lim_{n\rightarrow\infty} a_n = 0\,

and the series


f(z) = \sum_{n=0}^\infty a_nz^n\,

converges when |z| < 1 and diverges when |z| > 1, and the coefficients {an} are positive real numbers decreasing monotonically toward the limit zero for n > m (for large enough n, in other words), then the power series for f(z) converges everywhere on the unit circle, except when z = 1. Abel's test cannot be applied when z = 1, so convergence at that single point must be investigated separately. Notice that Abel's test can also be applied to a power series with radius of convergence R ≠ 1 by a simple change of variables ζ = z/R.[1]

Proof of Abel's test: Suppose that z is a point on the unit circle, z ≠ 1. Then


z = e^{i\theta} \quad\Rightarrow\quad z^{\frac{1}{2}} - z^{-\frac{1}{2}} = 
2i\sin{\textstyle \frac{\theta}{2}} \ne 0

so that, for any two positive integers p > q > m, we can write


\begin{align}
2i\sin{\textstyle \frac{\theta}{2}}\left(S_p - S_q\right) & = 
\sum_{n=q+1}^p a_n \left(z^{n+\frac{1}{2}} - z^{n-\frac{1}{2}}\right)\\
& = \left[\sum_{n=q+2}^p \left(a_{n-1} - a_n\right) z^{n-\frac{1}{2}}\right] -
a_{q+1}z^{q+\frac{1}{2}} + a_pz^{p+\frac{1}{2}}\,
\end{align}

where Sp and Sq are partial sums:


S_p = \sum_{n=0}^p a_nz^n.\,

But now, since |z| = 1 and the an are monotonically decreasing positive real numbers when n > m, we can also write


\begin{align}
\left| 2i\sin{\textstyle \frac{\theta}{2}}\left(S_p - S_q\right)\right| & = 
\left| \sum_{n=q+1}^p a_n \left(z^{n+\frac{1}{2}} - z^{n-\frac{1}{2}}\right)\right| \\
& \le \left[\sum_{n=q+2}^p \left| \left(a_{n-1} - a_n\right) z^{n-\frac{1}{2}}\right|\right] +
\left| a_{q+1}z^{q+\frac{1}{2}}\right| + \left| a_pz^{p+\frac{1}{2}}\right| \\
& = \left[\sum_{n=q+2}^p \left(a_{n-1} - a_n\right)\right] +a_{q+1} + a_p \\
& = a_{q+1} - a_p + a_{q+1} + a_p = 2a_{q+1}\,
\end{align}

Now we can apply Cauchy's criterion to conclude that the power series for f(z) converges at the chosen point z ≠ 1, because sin(½θ) ≠ 0 is a fixed quantity, and aq+1 can be made smaller than any given ε > 0 by choosing a large enough q.

[edit] External links

[edit] Notes

  1. ^ (Moretti, 1964, p. 91)

[edit] References

  • Gino Moretti, Functions of a Complex Variable, Prentice-Hall, Inc., 1964


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -