See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
6-j symbol - Wikipedia, the free encyclopedia

6-j symbol

From Wikipedia, the free encyclopedia

Wigner's 6 − j symbols were introduced by Eugene Paul Wigner in 1940, and published in 1965. They are related to Racah's W-coefficients by


  \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
  \end{Bmatrix}
   = (-1)^{j_1+j_2+j_4+j_5}W(j_1j_2j_5j_4;j_3j_6).

They have higher symmetry than Racah's W-coefficients.

Contents

[edit] Symmetry relations

The 6 − j symbol is invariant under the permutation of any two columns:


 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
 \end{Bmatrix}
 =
 \begin{Bmatrix}
    j_2 & j_1 & j_3\\
    j_5 & j_4 & j_6
 \end{Bmatrix}
=
 \begin{Bmatrix}
    j_1 & j_3 & j_2\\
    j_4 & j_6 & j_5
 \end{Bmatrix}
=
 \begin{Bmatrix}
    j_3 & j_2 & j_1\\
    j_6 & j_5 & j_4
 \end{Bmatrix}.

The 6 − j symbol is also invariant if upper and lower arguments are interchanged in any two columns:


 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
 \end{Bmatrix}
 =
 \begin{Bmatrix}
    j_4 & j_5 & j_3\\
    j_1 & j_2 & j_6
 \end{Bmatrix}
 =
 \begin{Bmatrix}
    j_1 & j_5 & j_6\\
    j_4 & j_2 & j_3
 \end{Bmatrix}
 =
 \begin{Bmatrix}
    j_4 & j_2 & j_6\\
    j_1 & j_5 & j_3
 \end{Bmatrix}.

The 6 − j symbol


 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
 \end{Bmatrix}

is zero unless j1, j2, and j3 satisfy triangle conditions, i.e.,


  j_1 = |j_2-j_3|, \ldots, j_2+j_3.

In combination with the symmetry relation for interchanging upper and lower arguments this shows that triangle conditions must also be satisfied for (j1,j5,j6), (j4,j2,j6), and (j4,j5,j3).

[edit] Special case

When j6 = 0 the expression for the 6-j symbol is:


 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & 0
 \end{Bmatrix}
 = \frac{\delta_{j_2,j_4}\delta_{j_1,j_5}}{\sqrt{(2j_1+1)(2j_2+1)}} (-1)^{j_1+j_2+j_3}\Delta(j_1,j_2,j_3).

The function Δ(j1,j2,j3) is equal to 1 when (j1,j2,j3) satisfy the triangle conditions, and zero otherwise. The symmetry relations can be used to find the expression when another j is equal to zero.

[edit] Orthogonality relation

The 6-j symbols satisfy this orthogonality relation:


  \sum_{j_3} (2j_3+1)
 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6
 \end{Bmatrix}
 \begin{Bmatrix}
    j_1 & j_2 & j_3\\
    j_4 & j_5 & j_6'
 \end{Bmatrix}
  = \frac{\delta_{j_6^{}j_6'}}{2j_6+1} \Delta(j_1,j_5,j_6) \Delta(j_4,j_2,j_6).

[edit] See also

[edit] External links

[edit] References

  • Biedenharn, L. C.; van Dam, H. (1965). Quantum Theory of Angular Momentum: A collection of Reprints and Original Papers. New York: Academic Press. ISBN 0120960567. 


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -