See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Bild:TSP cutting plane.png – Wikipedia

Bild:TSP cutting plane.png

aus Wikipedia, der freien Enzyklopädie

Wikimedia Commons Logo Diese Datei wird aus dem zentralen, mehrsprachigen Dateiarchiv Wikimedia Commons eingebunden. Sämtliche Informationen unter dem roten Trennstrich stammen von der dortigen Beschreibungsseite der Datei.
Wikimedia Commons Logo

[edit] Summary

Description

Illustrates the intersection of the unit cube with the cutting plane x_1 + x_2 + x_3 \geq 2. In the context of the Traveling salesman problem on three nodes, this (rather weak) inequality states that every tour must have at least two edges.

Source

own work, created using xfig and fig2dev.

Date

August 27, 2006

Author

Sdo

Permission
(Reusing this image)

see below


[edit] Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons License
Creative Commons Attribution iconCreative Commons Share Alike icon
This file is licensed under the Creative Commons Attribution ShareAlike 2.5 License. In short: you are free to share and make derivative works of the file under the conditions that you appropriately attribute it, and that you distribute it only under a license identical to this one. Official license

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomMaßeBenutzerKommentar
aktuell20:09, 27. Aug. 2006983×733 (17 KB)Sdo ({{Information |Description=Illustrates the intersection of the unit cube with the cutting plane <math>x_1 + x_2 + x_3 \geq 2</math>. In the context of the Traveling salesman problem on three nodes, this (rather weak) inequality states that every tour must)

Die folgende Seite verwendet diese Datei:


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -