See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Rydberg-Konstante – Wikipedia

Rydberg-Konstante

aus Wikipedia, der freien Enzyklopädie

Die Rydberg-Konstante R ist eine nach Johannes Rydberg benannte, in der Quantenmechanik verwendete Naturkonstante. Ihr derzeit allgemein empfohlener Wert beträgt nach CODATA 2006[1][2]

R = 10 973 731,568 527 (73) m-1

Sie kann demnach auf eine relative Standardabweichung von 0,0066 × 10-9 genau angegeben werden und ist damit die am genauesten messbare Naturkonstante überhaupt. Sie ergibt sich aus der Feinstrukturkonstante α und der Compton-Wellenlänge eines Elektrons, λC,e nach

R_\infty = \frac{\alpha^2}{2 \lambda_{C,e}}

Die Wellenlängen der Spektrallinien von Atomen können anhand der Formel

\frac{1}{\lambda} = Z^2 \frac{R_{\infty}}{1+ \frac{m_e}{M}} \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right) = R_M \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right)

bestimmt werden. Dabei ist Z die Anzahl der Protonen im Kern (für Wasserstoff ist Z=1), M die Masse des Kerns und λ die Wellenlänge des vom Elektron emittierten Photons. Weiter bezeichnet n1 die Quantenzahl des Orbits, von dem aus das Elektron in den tiefergelegenen Orbit n2 übergeht - also etwa vom dritten Orbit n1=3 in den zweiten n2=2.

Häufig werden auch Rydberg-Frequenz R und die Rydberg-Energie Ry als Rydberg-Konstante angegeben. Diese betragen

  • Rydberg-Frequenz: R = c R_\infty  = 3{,}289\;841\;960\;\left(22\right) \cdot 10^{15} \ \mathrm{Hz}
  • Rydberg-Energie: R_y=h R = h c R_\infty = 13{,}605\;692\;3\left(12\right) \ \mathrm{eV} = 1Ry

Letzteres ist gerade die Ionisierungsenergie des Wasserstoffs und wird ein Rydberg der Energie genannt.

Die Wellenlänge ist nicht nur von der Rydberg-Konstante und der Kernladung, sondern auch von der Kernmasse M abhängig. Für jedes Isotop eines Elements kann die Wellenlänge aus

R_M = Z^2 \, \frac{R_{\infty}}{1+ \frac{m_e}{M}}

für (Z-1)-fach geladene Kerne mit einem Elektron nach einer analogen Formel berechnet werden.


[Bearbeiten] Herleitung

Die Rydberg-Konstante lässt sich über die Bohrsche Bedingung, die Zentrifugalkraft, die Coulombkraft, und die elektrische potenzielle Energie eines Elektrons im Orbit um ein Proton berechnen.

  • Die Bohrsche Bedingung ist
     2 \pi r = n \lambda \
    wobei r der Radius des Elektronenorbits bezeichnet.
  • Für die Zentrifugalkraft gilt
     F_{C}= \frac{m v^2}{r}
  • Coulombkraft zwischen Proton und Elektron
     F_{E}= \frac{e^2}{4 \pi \epsilon_0 r^2 }
  • Die potenzielle Energie im Abstand r zum Proton beträgt
     V = \int_\infty^r  F_{E} \, \mathbf{dr} = - \frac {e^2}{ 4 \pi \epsilon_0 r}

Mit der Beziehung von de Broglie  \lambda  = \frac{h}{p} =\frac{h}{mv} \ erhalten wir aus der Bohrschen Bedingung

 v = \frac {n h}{2 \pi r m} \ (1)

Für eine stabile Bahn gilt klassisch

 F_{C} = F_{E} \
 \frac{m v^2}{r} = \frac{e^2}{4 \pi \epsilon_0 r^2 } \ (2)

Nach Einsetzen von (1) in diese Beziehung ergibt sich für den Radius

 r = \frac{n^2 h^2 \epsilon_0 }{ \pi m e^2} \ (3)

Unter den gemachten Annahmen sind dies also einzigen erlaubten Radien für ein sich um ein Proton bewegendes Elektron.

Außerdem folgt aus (2) für die Geschwindigkeit

 v^2 = \frac{e^2}{4 \pi \epsilon_0 m r } \ (4)

Wenn wir mit (3) und (4) die Gesamtenergie berechnen, finden wir

 E = T + V =\frac{1}{2}mv^2 - \frac {e^2}{ 4 \pi \epsilon_0 r}=\frac{e^2}{8 \pi\epsilon_0 r}- \frac {e^2}{ 4 \pi \epsilon_0 r}=-\frac{e^2}{8 \pi\epsilon_0 r}=-\frac{m e^4}{8 \epsilon_0^2 h^2}\cdot \frac{1}{n^2} \

Jeder Orbit besitzt demnach eine bestimmte potenzielle und kinetische Energie, sodass bei einer Änderung des Orbits von n1 nach n2 auch eine Energieänderung stattfindet. Diese Änderung ist gerade

 \Delta E = \frac{ m e^4}{8 \epsilon_0^2 h^2} \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right) \

Oder mit

\Delta{E} = \frac{hc}{\lambda}

als Wellenlängenänderung geschrieben

 \frac{1}{ \lambda} = \frac{ m e^4}{8 \epsilon_0^2 h^3 c} \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right) \ .

Da hier ein e2 die Ladung des Kerns repräsentiert, muss für allgemeine Atome die Kernladungszahl Z hinzugefügt werden. Damit gilt

 \frac{1}{\lambda} = \frac{Z^2 m e^4}{8 \epsilon_0^2 h^3 c} \left( \frac{1}{n_2^2} - \frac{1}{n_1^2} \right) \ .

Die Rydberg-Konstante von Wasserstoff ist daher gerade

 R_\infty = \frac{ m e^4}{8 \epsilon_0^2 h^3 c} .

Dieses Ergebnis wurde erstmals von Niels Bohr als Folgerung seines Atommodells bestimmt.

Für den genauen Wert von R bzw. der Energieniveaus des Wasserstoffs muss die Mitbewegung des Kerns berücksichtigt werden, weshalb die Elektronenmasse durch die reduzierte Masse µ ersetzt wird.

 R_\infty = \frac{\mu e^4}{8 \epsilon_0^2 h^3 c} , mit  \mu = \frac{m M}{m + M} = \frac{m}{1 + \frac{m}{M}}

[Bearbeiten] Quellen

  1. CODATA Internationally recommended values of the Fundamental Physical Constants 2006
  2. http://physics.nist.gov/cgi-bin/cuu/Value?ryd

[Bearbeiten] Siehe auch

Physikalische Konstanten


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -