See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Pulslaser – Wikipedia

Pulslaser

aus Wikipedia, der freien Enzyklopädie

Unter einem Pulslaser versteht man einen Laser, der das Licht nicht kontinuierlich emittiert (wie beim Dauerstrichlaser), sondern gepulst betrieben wird, d.h. das Licht in zeitlich begrenzten Portionen (den Pulsen) emittiert. Je nach zeitlicher Länge der Pulse spricht man von Kurz- oder Ultrakurzpulslasern.

Inhaltsverzeichnis

[Bearbeiten] Eigenschaften

Während Licht eines Dauerstrichlasers typischerweise ein sehr schmales Spektrum hat, sind gemäß der zeitlichen Fourier-Transformation der zeitliche Verlauf und das Spektrum eines Pulses miteinander verknüpft. Das Produkt aus zeitlicher und spektraler Breite (Δt und Δν) erfüllt die Ungleichung:


\Delta t \cdot \Delta \nu \ge const.

Die Konstante hängt hierbei von der Pulsform ab. Für einen gaußförmigen Pulse ist z.B. \Delta t \Delta \nu \ge 0.44 . Umso kürzer ein Puls also ist, desto größer ist seine Frequenz-Bandbreite.

[Bearbeiten] Erzeugung

Einige Lasertypen emittieren physikalisch bedingt nur Laserpulse oder lassen sich nicht effizient als cw-Laser betreiben. Der erste Laser, der Rubinlaser ist ein solcher Pulslaser. Die in der Besetzungsinversion gespeicherte Energie wird von einem Puls schneller „abgeräumt“ als die Pumpquelle neue Energie in das obere Laser-Niveau pumpt. Insbesondere mit Blitzlampen gepumpte Festkörperlaser emittieren ausschließlich gepulstes Laserlicht. Die Energie, Dauer und Spitzenleistung kann dabei über kontrollierte Stromzufuhr für die Blitzlampen exakt eingestellt werden.

Auch können viele cw-Laser gepulst betrieben werden, indem die Pumpleistung schnell ein- und ausgeschaltet wird. Kohlendioxidlaser können so bis über 1 kH gepulst betrieben werden. Im Prinzip lassen sich Pulse auch mit einer Kombination aus cw-Laser und einem Modulator (z.B ein einfacher Chopper) erzeugen. So ein Verfahren ist jedoch nicht sehr effizient, da man einen Großteil der Laserleistung verliert. Darüber hinaus ist die minimale erreichbare Pulsdauer durch die Schnelligkeit des Modulators begrenzt. In der Praxis ist man daher bestrebt die gesamte Besetzungsinversion, d.h. die gesamte zur Verfügung stehende Verstärkung des Lasers während einer Pulsdauer abzurufen.

Zur Erzeugung kurzer und ultrakurzer Pulserzeugung existieren unterschiedliche Verfahren. Mit Ihnen lassen sich Spitzenleistungen im Bereich von mehreren GW erreichen.

[Bearbeiten] Güteschaltung

Hauptartikel: Güteschaltung

Unter Güteschaltung (engl. Q-Switching) versteht man das Schalten der Verluste innerhalb des Laserresonators. Die Verluste werden hoch gehalten, während das aktive Lasermedium gepumpt wird. Durch die hohen Verluste kann der Laser während dieser Zeit nicht anschwingen. An einem bestimmten Punkt werden nun die Verluste schlagartig reduziert (die Güte des Resonators wird erhöht), und die Verstärkung wird während eines kurzen Zeitraums abgerufen.

Die Implementierung kann durch aktive oder passive Elemente erfolgen. Akustooptische oder Elektrooptische Modulatoren stellen aktive Varianten dar, während ein sättigbarer Absorber ein passives Element ist.

Mit der Güteschaltung lassen sich typischerweise Pulsdauern im Bereich von Nanosekunden und Pulsenergien von einigen Millijoule erreichen.

[Bearbeiten] Modenkopplung

Hauptartikel: Modenkopplung

Bei der Modenkopplung (engl. mode locking) werden die im Laser vorhandenen longitudinalen Moden synchronisiert. Durch die phasenrichtige Überlagerung interferieren die unterschiedlichen Moden konstruktiv, so dass sich ein kurzer Puls ausbildet.

Wie bei der Güteschaltung gibt es auch hier aktive und passive Verfahren. Ein aktives Verfahren ist wieder die Verwendung eines Akustooptischen Modulators. Bei der Modenkopplung regelt dieser aber nicht die Verluste so, dass der Laserbetrieb für eine bestimmte Zeit komplett unterdrückt wird. Vielmehr wird der Modulator mit einer Frequenz betrieben, die der Umlaufzeit eines Pulses im Resonator entspricht. Der Modulator muss hierbei nicht zwischen 0 und 100% Transmission schalten. Es genügt bereits eine Modulation von einigen Prozent. Passive Verfahren lassen sich durch sättigbare Absorber oder durch Ausnutzung des Kerr-Linsen-Effekts realisieren.

Mit der Modenkopplung erreicht man Pulsdaueren im Bereich von Piko- und Femtosekunden. Die Pulsenergien liegen mit Werten im Pico- und Nanojoule-Bereich deutlich unter den mit gütegeschalteten Lasern erreichbaren Werten. Die kürzesten Pulse erreicht man bei Verwendung von sättigbaren Absorbern. Die Pulse lassen sich nachträglich verstärken, z.B. in einem regenerativem Verstärker.

[Bearbeiten] Messung

Um einen Prozess zeitlich aufzulösen braucht man Ereignisse die kürzer als das zu messende Ereignis sind. Ultrakurze Laserpulse sind die kürzesten Ereignisse die künstlich erzeugt werden können. Eine elektronische Messung mit einer Photodiode ist nicht möglich, da die Schnelligkeit einer Photodiode durch die Rekombinationszeit der Elektron-Loch Paare begrenzt wird, welche typischerweise im Nanosekunden-Bereich liegt.

Oft ist das kürzeste zur Verfügung stehende Ereignis der Puls selbst. In einem Autokorrelator kann man den Puls "mit sich selbst" vermessen, und so auf die Pulsdauer schließen.

Eine weitere Möglichkeit ist die Benutzung von FROG (Frequency-resolved optical gating). Hiermit lässt sich ein Spektrogramm des Pulses aufnehmen, und daraus das elektrische Feld und die Phase berechnen.

[Bearbeiten] Anwendungen

Pulslaser finden aufgrund ihrer hohen Spitzenintensitäten vielfältige Anwendungen z.B. in der Materialbearbeitung und der Augenheilkunde. Bei letzterem kann man Fehlsichtigkeit durch gezielte Abtragung von Hornhautoberfläche korrigieren (z. B. LASIK-Operation, Femto Lasik).

Weiterhin lassen sich wegen der hohen Intensitäten Effekte der nichtlinearen Optik, wie z.B. Frequenzverdopplung oder den Kerr-Effekt induzieren.

Aufgrund der extrem kurzen Pulsdauern lassen sich physikalische Prozesse die auf der Zeitskale der Pulsdauer ablaufen, auflösen. Dies geschieht z.B. mit der Pump-Probe-Technik.

[Bearbeiten] Siehe auch

[Bearbeiten] Weblinks


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -