See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Skup prirodnih brojeva - Wikipedia, slobodna enciklopedija

Skup prirodnih brojeva

Sa Wikipedije, slobodne enciklopedije

Skup prirodnih brojeva označavamo sa N. On je definisan na sljedeći način 0={ø } 1={0} 2={1,2}...

Sadržaj

[uredi] Sabiranje prirodnih brojeva

Neka su dati konačni skupovi A i B i neka je kA=a i kB=b i neka je A∩B= =ø. Broj k(AUB)= predstavlja zbir (sumu) brojeva a i b, koji su sumandi (adendi, pribrojnici). Računska operacija koju pri tom obavljamo je sabiranje (adicija). Za sabiranje prirodnih brojeva važi

  1. Zakon zatvorenosti a+b je prirodan broj
  2. zakon komutacije a+b=b+a
  3. zakon asocijacije (a+b)+c=a+(b+c)
  4. zakon trihotonomije a=b ili a+c=b a=b+d Za a + c=b =>a < b,za a = b + d => a > b
  5. zakon kancelacije skračivanja

ako je a+c=b+c onda je a=b

Teorema 1

a=b <= > a+c= b+c.

Pod a1+ a2 + a3, podrazunjevamo (a1+ a2)+ a3. Pod a1 + a2+ a3 + a4 podrazunjevamo (a1 + a2 + a3 )+ a4 . uopštano je a1+ a2+ a3+....+ an= (a1+ a2+...+ am)+(.. a(m+1+...+ + an).

Teorema 3

a < b=> a+c< b+c

dokaz

a < b < => a+d=b< => a+d +c= b+c< => (a+c)+d = b+c< => a+c<b+c.

Teorema 4

(a < b & b<c) => a<c

[uredi] Množenje prirodnih brojeva

Neka je kA=a i kB=b , broj k(AxB) zovemo proizvod ( produkt, umnožnik) brojeva a i b koji su faktori (činioci) . Proizvod označavamo sa ab.

Za množenje prirodnih brojeva važi

  1. Zakon zatvorenosti ab je prirodan broj
  2. zakon komutacije ab= ba
  3. zakon asocijacije (ab)c=a(bc)
  4. zakon kancelacije skračivanja ako je ac=bc onda je a=b
  5. zakon distribucije množenja u odnosu na sabiranje

(a+b)c=ac +bc.

Broj b+b+b+....+b gdje pribrojnik b dolazi a puta zove se proizvod brojeva a i b .

Teorema 5

a = b => ac=bc a < b => ac < bc

Arhimedova teorema

Za svaka dva prirodna broja a i b postoji prirodni broj n takav da je an > b.

[uredi] Algebarske operacije

Posmatrajmo operacije sabiranja i množenja u skupu N. Očito je to preslikavanje skupa NxN u skup N definisano sa

(a,b)→ a + b i analogno

a(a,b)→ab.

Neka je S neprazan skup. Binarna algebarska operacija (kompozicija) na skupu S je svako preslikavanje f:SxS→ S. Za algebarske operacije vrijedi

  1. Zakon komutacije ako je a*b=b*a
  2. Zakon asocijacje ako je a*(b*c)= a*b)*c

Ovi zakoni ne moraju važiti uvijek.

Primjer

(a,b)= 2a + 2b

a*b= 2a+2b= 2b + 2a= b*a

(a*b)*c = (2a+2b)*c= 2(2a + 2b) + 2c= 4a+4b+2c

a*(b*c)= 2a+2(2b+2c) = 2a+4b + 4c

tj ne važi asocijativnost.

Neka su date dvije operacije * i ○ kažemo da je operacija lijevo distributivna u odnosu na ○ ako vrijedi a*(b○c)=(a*b) ○(a*c).


Ako su A, B,C neprazni skupovi tada svako preslikavanje skupa AxB u C zovemo binarnom algebarskom operacijom sa AxB u C. Specijalno je A=B=C.

Sam skup i skup na koji se preslikava algebarska operacija nije isto. Razlika je velika. U drugom slučaju sa elementima skupa možemo računati.

Skup zajedno sa algebarskom operacijom nazivamo grupoid. Uređen par (S,*) koji čini neprazni skup S i algebarska operacija * definisana na skupu S zove se grupoid(monoid). Ako je (S* ) grupoid i e iz S onda je

  1. e lijevi neutralni element u odnosu na operaciju* akoje e*a=a
  2. e desnii neutralni element u odnosu na operaciju* akoje a*e=a
  3. e dvostruki neutralni element u odnosu na operaciju* akoje e*a=a*e=a.

Neutralni element za operaciju množenja u skupu N je e=1, a za sabiranje u skupu N0 je e=0.

Grupoid može biti asocijativan i komutativan. Asocijativan grupoid nazivamo polugrupa.Polugrupa može imati inverzni element.

  1. x je desni inverzni element u odnosu na operaciju * akoje a * x = e
  2. x je lijevi inverzni element u odnosu na operaciju * akoje x * a = e
  3. x je dvostruki inverzni element u odnosu na operaciju * akoje a * x =x * a = e

Grupa je polugrupa koja ima neutralni i inverzni ewlement.

Polugrupa (S, *) s dvostrukim inverznim elementom ima najviše jedan inverzni element

Dokaz

x1= x1 * e = x1 (a * x0) = (x1 * a )* = x0


Neka je (S,○) polugrupa i neka je ≤ linearno uređajna relacija sa osobinom: Ako je a < b onda je a ○ c < b ○ c, tada sistem (S,○,<) zovemo uređenom polugrupom. Primjer Polugrupe (N,+) i (N,*) su uređene polugrupe u odnosu na relaciju ≤. Za (S,○) i (S1 , °) grupidi . Za grupoid (S,○) kažemo da je izomorfan ( izos + morphe →istog oblika) grupoidu (S1, °) ako i samo ako postoji f:S→ S1 tako da je f(a ○ b ) → a ° b.

[uredi] Oduzimanje prirodnih brojeva

Od broja a oduzeti broj b znači naći broj d takav da je a = b+d.

Broj a je razlika ili diferencija brojeva a i b, broj a minuend ili umanjenik, a b suptrahend ili umanjitelj.

Očigledno u skupu N ne vrijedi zakon zatvorenosti tj a-b nije iz N za svaki par a i b.

Primjer 2-3 nije iz N


[uredi] Dijeljenje u skupu prirodnih brojeva

Podijeliti broj a brojem b znači naći broj q takav da je a = bq. N. Broj a je kvocijent ili količnik brojeva a i b, broj a je dividend ili djeljenik, a b je divizor ili djelitelj.

U skup N ne vrijedi zakon zatvorenosti za dijeljenje tj za svaki par a i b nije a / b iz N.

Primjer

5 / 3 nije iz N


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -