Web Analytics

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
3-jm symbol - Wikipedia, the free encyclopedia

3-jm symbol

From Wikipedia, the free encyclopedia

Wigner 3-jm symbols, also called 3j symbols, are related to Clebsch-Gordan coefficients through


\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}
\equiv \frac{(-1)^{j_1-j_2-m_3}}{\sqrt{2j_3+1}} \langle j_1 m_1 j_2 m_2 | j_3 \, {-m_3} \rangle.

Contents

[edit] Inverse relation

The inverse relation can be found by noting that j1 - j2 - m3 is an integer number and making the substitution  m_3 \rightarrow -m_3


\langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1-j_2+m_3}\sqrt{2j_3+1}
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & -m_3
\end{pmatrix}.

[edit] Symmetry properties

The symmetry properties of 3j symbols are more convenient than those of Clebsch-Gordan coefficients. A 3j symbol is invariant under an even permutation of its columns:


\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}
=
\begin{pmatrix}
  j_2 & j_3 & j_1\\
  m_2 & m_3 & m_1
\end{pmatrix}
=
\begin{pmatrix}
  j_3 & j_1 & j_2\\
  m_3 & m_1 & m_2
\end{pmatrix}.

An odd permutation of the columns gives a phase factor:


\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}
=
(-1)^{j_1+j_2+j_3}
\begin{pmatrix}
  j_2 & j_1 & j_3\\
  m_2 & m_1 & m_3
\end{pmatrix}
=
(-1)^{j_1+j_2+j_3}
\begin{pmatrix}
  j_1 & j_3 & j_2\\
  m_1 & m_3 & m_2
\end{pmatrix}.

Changing the sign of the m quantum numbers also gives a phase:


\begin{pmatrix}
  j_1 & j_2 & j_3\\
  -m_1 & -m_2 & -m_3
\end{pmatrix}
=
(-1)^{j_1+j_2+j_3}
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}.

[edit] Selection rules

The Wigner 3j is zero unless all these conditions are satisfied:

m_1+m_2+m_3=0\,
j_1+j_2 + j_3\, is integer
|m_i| \le j_i
|j_1-j_2|\le j_3 \le j_1+j_2.

[edit] Scalar invariant

The contraction of the product of three rotational states with a 3j symbol,


  \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} \sum_{m_3=-j_3}^{j_3}
  |j_1 m_1\rangle |j_2 m_2\rangle |j_3 m_3\rangle
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix},

is invariant under rotations.

[edit] Orthogonality Relations


(2j+1)\sum_{m_1 m_2}
\begin{pmatrix}
  j_1 & j_2 & j\\
  m_1 & m_2 & m
\end{pmatrix}
\begin{pmatrix}
  j_1 & j_2 & j'\\
  m_1 & m_2 & m'
\end{pmatrix}
=\delta_{j j'}\delta_{m m'}.


\sum_{j m} (2j+1)
\begin{pmatrix}
  j_1 & j_2 & j\\
  m_1 & m_2 & m
\end{pmatrix}
\begin{pmatrix}
  j_1 & j_2 & j\\
  m_1' & m_2' & m
\end{pmatrix}
=\delta_{m_1 m_1'}\delta_{m_2 m_2'}.

[edit] Relation to integrals of spin-weighted spherical harmonics


\int d{\mathbf{\hat n}} {}_{s_1} Y_{j_1 m_1}({\mathbf{\hat n}})
{}_{s_2} Y_{j_2m_2}({\mathbf{\hat n}}) {}_{s_3} Y_{j_3m_3}({\mathbf{\hat
n}})=(-1)^{m_1+s_1} \sqrt{\frac{(2j_1+1)(2j_2+1)(2j_3+1)}{4\pi}}
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  m_1 & m_2 & m_3
\end{pmatrix}
\begin{pmatrix}
  j_1 & j_2 & j_3\\
  -s_1 & -s_2 & -s_3
\end{pmatrix}

This should be checked for phase conventions of the harmonics.

[edit] See also

[edit] External links

[edit] References

  • E. P. Wigner, On the Matrices Which Reduce the Kronecker Products of Representations of Simply Reducible Groups, unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).
  • A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Princeton, 1960.
  • D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
  • L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
  • D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing Co., Singapore, 1988.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu