இயற்கணித எண்களும் விஞ்சிய எண்களும்
கட்டற்ற கலைக்களஞ்சியமான விக்கிபீடியாவில் இருந்து.
ஒர் உள்ளக எண் (real number) r, முழு எண்களைக் கெழுக்களாகக் கொண்ட பல்லுருப்புச் சமன்பாட்டை (polynomial equation with integral coefficients) சரி செய்யுமானால் அது ஓர் இயற்கணித எண் (Algebraic number) எனப்படும். இயற்கணித எண் அல்லாத உள்ளக எண்களுக்கு விஞ்சிய எண்கள் என்று பெயர். 19 வது நூற்றாண்டில் இயற்கணித எண்களும் விஞ்சிய எண்களும் கணித இயலர்களின் ஆய்வுக்கு இலக்காகியதும் இவைகளைப் பற்றிய உண்மைகள் சிறிது சிறிதாக வெளிப்படத் தொடங்கின.
பொருளடக்கம் |
[தொகு] எடுத்துக்காட்டுகள்
எடுத்துக்காட்டாக, a/b என்ற ஒவ்வொரு விகிதமுறு எண்ணும் இயற்கணித எண்தான்; ஏனென்றால் அவை
bx − a = 0
என்ற சமன்பாட்டைச் சரி செய்கின்றன.
ஆகவே, ஓர் எண் இயற்கணித எண்ணாக இல்லாவிட்டால் அது விகிதமுறா எண்ணாகத்தான் இருக்க வேண்டும்.
ஆனால் இதன் மாற்றுத் தீர்மானம் உண்மையல்ல. விகிதமுறா எண்ணெல்லாம் இயற்கணித எண்ணல்ல என்று சொல்லிவிட முடியாது. உதாரணத்திற்கு ஐ எடுத்துக்கொள்ளலாம். இது
x2 − 2 = 0
என்ற சமன்பாட்டைச் சரிசெய்கிறது. இதனால் ஓர் இயற்கணித எண்ணாகும். சொல்லப்போனால் இயற்கணிதத்தில் பொதுமட்டத்தில் நாம் சந்திக்கும் எண்கள் அநேகமாக இயற்கணித எண்களாகத்தான் இருக்கும். உ-ம்:
-1 ஒரு இயற்கணித எண்; எனென்றால் அது x + 1 = 0 ஐ சரிசெய்கிறது.
355/113 ஒரு இயற்கணித எண்; ஏனென்றால் அது 113 x - 355 = 0 ஐ சரிசெய்கிறது.
ஒரு இயற்கணித எண்; ஏனென்றால் அது x6 − 2x3 − 1 = 0 ஐ சரிசெய்கிறது.
ஆக, விகிதமுறா எண்களில் இயற்கணித விகிதமுறா எண்களும் இருக்கலாம், இயற்கணிதமற்ற விகிதமுறா எண்களும் இருக்கலாம்.
கற்பனை எண் என்று சொல்லப்படும் அமைகண எண் i உம் ஒரு இயற்கணித எண்தான்; ஏனென்றால் அது x^2 + 1 = 0 ஐ சரிசெய்கிறது a உம் b உம் இயற்கணித எண்ணானால் a + ib உம் இயற்கணித எண்தான்.
[தொகு] வரலாறு
ஆனால் 19ம் நூற்றாண்டு வரையில் இயற்கணிதமற்ற விகிதமுறா எண்கள் ஒன்று கூட கண்டுபிடிக்கப் படவில்லை. அப்படி ஒரு பகுப்பு இருக்குமா என்பதே தெரியவில்லை. 1844 இல் தான் ஜோசப் லியோவில் (1809-1882) இயற்கணிதமற்ற எண்கள், அதாவது, விஞ்சிய எண்கள், இருக்கமுடியும் என்பதை நிறுவினார். அவருடைய நிறுவல் வெகு நிரடலானது. ஆனால் அந்நிறுவல் பல விஞ்சிய எண்களைக் காட்ட வல்லதாயிருந்தது.
[தொகு] லியோவில் எண்
கீழே காட்டப்பட்ட எண்ணுக்கு லியோவில் எண் என்று பெயர்:
இதனுடைய தசம விரிவாக்கம்
0.1100010000000000000000010000......
இதனில் 1, 2, 6, 24, 120, ... வது இலக்கங்கள் 1 ஆகவும் மற்ற இலக்கங்கள் 0 வாகவும் இருக்கும். இந்த எண் ஒரு விஞ்சிய எண் என்று லியோவில் காட்டினார்.
விஞ்சிய எண்ணுக்கு இன்னொரு உதாரணம்:
0.123456789101112131415161718192021......
இங்குள்ள இலக்கங்களை எளிதில் எழுதிவிடலாம். ஏனென்றால் அவைகள் வெறும் இயல்பெண்கள் தான்; அவைகளின் வரிசையிலேயே ஒன்றன்பின் ஒன்றாகக் கொடுக்கப் பட்டிருக்கின்றன.
[தொகு] முக்கியமான விஞ்சிய எண்கள்
ஆனால் இந்த விஞ்சிய எண்களெல்லாம் விஞ்சிய எண்கள் என்ற நிறுவலுக்காகவே முயற்சியெடுத்து உண்டாக்கப்பட்டவை. வழக்கிலிருக்கும் எண்கள் ஏதாவது விஞ்சிய எண்கள் என்ற பகுப்பில் இருக்கின்றனவா என்பது நியாயமான கேள்வி. முக்கியமாக π,e இரண்டினுடைய நிலை என்ன? 1737 இல் ஆய்லர் e,e2 இரண்டும் விகிதமுறா எண்கள் என்று நிறுவினார். 1768 இல் லாம்பர்ட் π இன் விகிதமுறாப்பண்பை நிறுவினார். ஆனால் π,e இரண்டையுமே விஞ்சிய எண்களாகக்கூட இருக்கும் என்று தான் கணித உலகத்தின் எதிர்பார்ப்பு இருந்தது.
லியோவில் செய்த ஆய்வுகளில் எண் e முழு எண்களைக் கெழுக்களாகக்கொண்ட இருபடிச்சமன்பாடு எதையும் சரிசெய்யாது என்ற தீர்வை இருந்தது. ஆனால் e ஒரு விஞ்சிய எண் என்று காட்டுவதற்கு இது போதவே போதாது. அதற்கு, முழு எண்களைக் கெழுக்களாகக்கொண்ட எந்த பல்லுருப்புச்சமன்பாட்டையும் அது சரி செய்யாது என்று காட்டவேண்டும். இந்த சாதனையைப் புரிந்தவர் சார்ல்ஸ் ஹெர்மைட் (1822 - 1901). அவருடைய இந்த நிறுவல் 1873 இல் ஒரு 30-பக்க நூலாகப் பிரசுரமாகியது.
[தொகு] 'பை'யும் ஒரு விஞ்சிய எண்
லிண்டெமன் என்பவர் 1882 இல் πஉம் ஒரு விஞ்சிய எண் என்று நிறுவல் கொடுத்தார். அவருடைய தேற்றம்:
A1,A2,...An,a1,a2,...an எல்லாம் இயற்கணித எண்களாகவும், aiகள் வெவ்வேறு உள்ளக எண்களாகவோ பலக்க எண்களாகவோ இருக்குமானால்,
ஒருபோதும் சூன்யமாகாது.
ஆனால் ஆய்லர் சமன்பாடு eπi + 1 = 0 என்று சொல்கிறது. இதையே eπi + e0 = 0 என்றும் எழுதலாம். இப்பொழுது லிண்டெமன் தேற்றத்தைப் பயன்படுத்தினால், πi இயற்கணித எண்ணாக இருக்கமுடியாது என்று புலப்படும். ஆனால் i ஒரு இயற்கணித எண். அதனால் π ஒரு விஞ்சிய எண் தான்.
[தொகு] இவற்றையும் பார்க்கவும்
[தொகு] துணை நூல்கள்
- Richard Courant, Herbert Robbins, and Ian Stewart , What is Mathematics? Oxford University Press, New York, 1996 ISBN-13: 978-0195105193
- Krishnamurthy, V. Culture, Excitement and Relevance of Mathematics.Wiley Eastern Limited. New Delhi. 1990 ISBN 81-224-0272-0