Pravokotnost
Iz Wikipedije, proste enciklopedije
Pravokótnost (tudi ortogonálnost) je ena od osnovnih relacij med različnimi geometrijskimi objekti: premicami, daljicami, vektorji, krivuljami, ravninami ipd. Pravokotnost označimo s simbolom .
Premici sta pravokotni, če se sekata tako, da oklepata pravi kot - to je kot, ki je skladen s svojim sokotom (v stopinjah meri 90°). Pravokotni premici torej delita ravnino, v kateri ležita, na štiri med seboj skladne dele.
Premica je pravokotna na ravnino, če je pravokotna na katerokoli premico, ki leži v tej ravnini in poteka skozi prebodišče. Premico, ki je pravokotna na ravnino (ali tudi na krivuljo ali ploskev), imenujemo normala.
[uredi] Ugotavljanje pravokotnosti
Če pravokotni premici v kartezični ravnini zapišemo z enačbama in , potem za smerna koeficienta premic velja: .
Krivulji sta pravokotni, če sta pravokotni njuni tangenti v presečišču. Če sta krivulji podani kot grafa funkcij, lahko preverimo pravokotnost tako, da z odvodom izračunamo smerna koeficienta obeh tangent in ugotovimo, če velja zveza .
Vektorja sta pravokotna, samo če je njun skalarni produkt enak 0. (Pri tem privzamemo, da je ničelni vektor pravokoten na vse vektorje.)