Управляемый термоядерный синтез
Материал из Википедии — свободной энциклопедии
Управляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерном оружии), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (²H) и тритий (³H), а в более отдалённой перспективе гелий-3 (³He) и бор-11 (11B)
Содержание |
[править] Типы реакций
Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. Самая легко осуществимая реакция — дейтерий + тритий:
- ²H + ³H = 4He + n Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.
Существенно сложнее, на пределе возможного, осуществить реакцию дейтерий + гелий-3:
Так же возможны реакции между ядрами дейтерия, они идут немного труднее реакции с участием гелия-3:
и
Эти две реакции медленно протекают параллельно с реакцией дейтерий + гелий-3, а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием.
Кроме того так же перспективна протон-борная реакция:
В частности, на настоящее время принципиально осуществимы следующие типы реакций:
Реакция дейтерий + тритий (Топливо D-T) :
²H + ³H = 4He + n при энергетическом выходе 17,6 МэВ
Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток её- выход нежелательной нейтронной радиации.
Реакция дейтерий + гелий-3:
²H + ³He = 4He + p. при энергетическом выходе 18,3 МэВ
Условия её достижения значительно сложнее. Гелий-3,кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах на настоящее время не производится.
Реакция между ядрами дейтерия (D-D, монотопливо) D + D —> 3 He + n при энергетическом выходе 3,3 МэВ, и
D + D —> T + p при энергетическом выходе 4 МэВ.
Возможны и некоторые другие типы реакций. Выбор топлива зависит от многих факторов - его доступность и дешевизна, энергетический выход, лёгкость достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и проч. Наиболее перспективны т. н. «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и не может быть использован для создания тяги. Кроме того, нейтронная радиация порождает наведенную радиоактивность в конструкции реактора и корабля, создавая опасность для экипажа. Реакция дейтерий- гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.
[править] Условия
УТС возможен при одновременном выполнении двух критериев:
- Температура плазмы:
- Соблюдение критерия Лоусона:
где — плотность высокотемпературной плазмы, — время удержания плазмы в системе.
Именно от значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.
В настоящее время управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного исследовательского реактора ITER находится в начальной стадии.
[править] Термоядерная энергетика и гелий-3
Запасы гелия-3 на Земле составляют от 500 кг до 1 тонны, однако на Луне он находится в значительном количестве: до 10 млн тонн (по минимальным оценкам — 500 тысяч тонн). В настоящее время контролируемая термоядерная реакция осуществляется путем синтеза дейтерия 2H и трития 3H с выделением гелия-4 4He и "быстрого" нейтрона n:
Однако при этом большая часть выделяемой кинетической энергии приходится на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую. Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов. В отличие от этого синтез дейтерия и гелия-3 ³He не производит радиоактивных продуктов:
, где p - протон
Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие, как магнитогидродинамический генератор.
[править] Конструкции реакторов
Рассматриваются две принципиальные схемы осуществления управляемого термоядерного синтеза.
- Квазистационарные системы (). Нагрев и удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре. Для этого применяются реакторы в виде токамаков, стеллараторов, зеркальных ловушек и торсатронов, которые отличаются конфигурацией магнитого поля. Реактор ITER имеет конфигурацию токамака.
- Импульсные системы (). В таких системах УТС осуществляется путем кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными лазерными или ионными импульсами. Такое облучение вызывает последовательность термоядерных микровзрывов.
Исследования первого вида термоядерных реакторов существенно более развиты, чем второго.
[править] Ссылки
- Е.П. Велихов; С.В. Мирнов Управляемый термоядерный синтез выходит на финишную прямую (PDF) Троицкий институт инновационных и термоядерных исследований. Российский научный центр «Курчатовский институт».. ac.ru. — Популярное изложение проблемы.. Проверено 08.08.2007 г.
[править] Примечания