ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
MP3 - Wikipédia, a enciclopédia livre

MP3

Origem: Wikipédia, a enciclopédia livre.

Nota: Se procura o MP3 Player, consulte MP3 Player.
MPEG-1 Audio Layer 3
Extensão do arquivo .mp3
MIME type audio/mpeg
Desenvolvido por Instituto Fraunhofer

O MP3 (MPEG-1/2 Audio Layer 3) foi um dos primeiros tipos de compressão de áudio com perdas quase imperceptíveis ao ouvido humano. A taxa de compressão é medida em Kb/s (kilobits por segundo), sendo 128 Kb/s a qualidade padrão, na qual a redução do tamanho do arquivo é de cerca de 90%, ou seja, uma razão de 10:1. Essa taxa de compressão atualmente pode chegar até 320 Kb/s, a qualidade máxima, na qual a redução do tamanho do arquivo é de cerca de 25%, ou seja, uma razão de 4:1, passando antes por 192 Kb/s, 256 Kb/s, ou seja, o máximo de qualidade que pode ser tirado em MP3.

O método de compressão com perdas consiste em retirar do áudio tudo aquilo que o ouvido humano normalmente não conseguiria perceber, devido a fenômenos de mascaramento de sons e de limitações da audição humana (embora pessoas com ouvido absoluto possam perceber tais perdas).

Índice

[editar] O significado da sigla[carece de fontes?]

O MP3, é uma abreviação de MPEG 1 Layer-3. Os layers (camadas) referem-se ao esquema de compressão de áudio do MPEG-1. Eles foram projetados em número de 3, cada um com finalidades e capacidades diferentes. Enquanto o layer-1, que dá menor compressão, se destina a utilização em ambientes de áudio profissional (estúdios, emissoras de TV, etc) onde o nível de perda de qualidade deve ser mínimo devido a necessidade de reprocessamento, o layer 3 se destina ao áudio que será usado pelo cliente final. Como se espera que esse áudio não sofrerá novos ciclos de processamento, a compressão pode ser menos conservadora e aproveitar melhor as características psico-acústicas do som limitando-se apenas pela qualidade desejada para o ouvido humano.

A compressão típica do layer 1 é de 2:1 enquanto a do layer-3 é de 10:1. É importante lembrar que essa diferença da compressão não tem nada a ver com um layer ser mais avançado que o outro tecnologicamente, mas sim com o objetivo da aplicação do áudio ser processado.

Um erro comum é confundir o MP3 com MPEG-3. MPEG-3 é um formato morto, pois o formato MPEG-4 o suplantou com muitas vantagens. Enquanto o MPEG-3 deveria ter sido um formato para compressão tanto de áudio como de vídeo o MP3 responde apenas pela compressão de áudio do MPEG-1.

[editar] História [1]

Início de 1970: O Prof. Dieter Seitzer da Universidade Erlangen-Nuremberg na Alemanha depara-se com o problema de transmitir fala em alta qualidade através de linhas telefônicas. Ele inicia então um grupo de pesquisa em codificação de áudio.

Fim de 1970: Em virtude do surgimento do ISDN (Integrated Service Digital Network) e cabos de fibra óptica para telecomunicações, melhorar a codificação de voz pareceu pouco importante, então o Prof. Seitzer iniciou a pesquisa em codificação de sinais de música.

1979: O grupo do Prof. Seitzer desenvolveu o primeiro processador de sinais digitais capaz de realizar a compressão de áudio. Um dos estudantes, Karlheinz Brandenburg, começou a implementar princípios da psicoacústica na codificação de áudio.

1987: A Universidade Erlangen-Nuremberg realizou uma parceria com o Instituto Fraunhofer.

1988: Estabeleceu-se o MPEG (Moving Picture Experts Group), grupo de trabalho da ISO (International Standardisation Organization) responsável por desenvolver padrões para a compressão de áudio e vídeo digitais.

1989: Brandenbeurg finalizou sua tese de doutorado onde apresentava o algoritmo OCF (Optimum Coding in the Frequency Domain). Tal codec possuía várias características da atual tecnologia MP3 e era um sistema de tempo real.

1991: Melhoras no algoritmo OCF somadas a contribuições da Universidade de Hannover, dentre outras, produziram um novo codec de áudio chamado ASPEC (Adaptative Spectral Perceptual Entropy Coding). O ASPEC foi um dos 14 trabalhos enviados para a ISO como proposta de codificação de áudio. Após testes rigorosos, a ISO sugeriu que a codificação de áudio apresentassem 3 abordagens em escala de complexidade e eficiência:

Layer 1 e Layer 2, mais simples, baseadas em um outro codec enviado à ISO, o MUSICAN,

Layer 3 , de alta eficiência e maior complexidade, baseada no ASPEC.

O ASPEC evolui então para o codec MP3 - MPEG-1 Layer 3.

1995: Os pesquisadores de Fraunhofer votaram ' .mp3 ' como a extensão de arquivos MPEG Layer 3. Disponibilizou-se o codec do Layer 3 como shareware.

1997: Michael Robertson constrói o site 'mp3.com', onde disponibiliza informações e tudo mais relacionado à tecnologia MP3.

1998: Surgem os primeiros players portáteis de MP3, usando memória flash.

2000: Surgem no mercado dos EUA CD players com funcionalidades de mp3.

2006: Na Alemanha, MP3 gera mais de 10000 postos de trabalho e aproximadamente 300 milhões de euros de impostos. Os alemães gastam em média 1,5 bilhões de euros em MP3 players e produtos relacionados.

Após a grandiosa fama na Internet, o MP3 causou grande revolução no mundo do entretenimento. Assim como o LP de vinil, o cassete de áudio e o CD, o MP3 se fortaleceu como um popular meio de distribuição de canções. A questão chave para entender todo o sucesso do MP3 se baseia no fato de que, antes dele ser desenvolvido, uma música no computador era armazenada no formato WAV, que é o formato padrão para arquivo de som em PCs, chegando a ocupar dezenas de megabytes em disco.

Na média, um minuto de música corresponde a 10 MB para uma gravação de som de 16 bits estéreo com 44,1 KHz, o que resulta numa grande complicação a distribuição de músicas por computadores, principalmente pela Internet. Com o surgimento do MP3 essa história mudou, pois o formato permite armazenar músicas no computador sem ocupar muito espaço e sem tirar a qualidade sonora das canções. Geralmente, um minuto de música corresponde a cerca de 1 MB em MP3. O MP3 (MPEG-1/2 Audio Layer 3) foi um dos primeiros tipos de arquivos a comprimir áudio com perda de dados, com eficiência, de forma quase imperceptível ao ouvido humano.

Ao se popularizar, o formato MP3 deixou conseqüentemente a indústria fonográfica preocupada com seus lucros. O MP3 alcançou um sucesso tão grande que, quando as gravadoras se deram conta, o formato já estava presente em milhões de computadores em todo o mundo.

[editar] Princípios

As taxas de compressão alcançadas pelo MP3 chegam a até 12 vezes, dependendo da qualidade desejada. Para fazer isso o MP3 utiliza-se, além das técnicas habituais de compressão, de estudos de psico-acústica, sendo que estes permitem aproveitar-se das limitações e imperfeições da audição humana.

A utilização dos limites da audição humana baseia-se em três princípios básicos:

  • 1)Faixa de frequência audível dos seres humanos;
  • 2)Limiar de audição na faixa de frequência audível;
  • 3)Mascaramento em frequência e mascaramento temporal.
  • Faixa de frequência audível humana: O ouvido humano, devido às suas limitações físicas, é capaz de detectar sons em uma faixa de frequência que varia de 20Hz a 20KHz, sendo que estes valores podem variar de indivíduo para indivíduo e também com a idade (com o envelhecimento perdemos a capacidade de ouvir frequências mais altas). Desta forma, não faz sentido armazenar dados referentes a sons fora desta faixa de frequência, pois ao serem reproduzidos, os mesmos não serão percebidos por um ser humano. Esta é a primeira limitação da audição humana do qual o sistema MP3 faz uso para alcançar altas taxas de compressão. De acordo com o Teorema de Nyquist, para garantir a reprodução de um sinal, temos de amostrá-lo pelo menos a duas vezes sua frequência máxima. Ou seja, neste caso, como a frequência máxima de interesse é 20KHz, basta amostrar a 40KHz. Utilizam-se 44100Hz como taxa de amostragem, pois levam-se em consideração 10% de tolerância e busca-se um valor produto dos quatro primeiros números primos. (Obs. (2x3x5x7)^2 = 44100). Desta forma, esta taxa de amostragem funciona como um filtro passa-baixas, que remove todos os componentes de frequência fora da faixa de interesse, neste caso, acima de 20Khz.
  • Limiar de audição na faixa de frequência audível: Outro fator utilizado pela codificação MP3 é a curva de percepção da audição humana dentro da faixa de frequências audíveis, ou Limiar de Audição. Apesar da faixa de audição humana variar entre 20Hz e 20KHz, a sensibilidade para sons dentro desta faixa não é uniforme. Ou seja, a percepção da intensidade de um som varia com a frequência em que este se encontra. Desta forma, o MP3 utiliza-se desta propriedade para obter compressão em arquivos de áudios. Esta abordagem é bastante intuitiva, sendo que o que se faz é descartar amostras que se encontrem abaixo deste limiar.
  • Mascaramento em frequência e mascaramento temporal: Por fim, uma última propriedade da audição humana ainda é utilizada pelo método é o chamado mascaramento auditivo, ou “audiabilidade diminuída de um som devido à presença de outro”, podendo este ser em frequência ou no tempo. O mascaramento em frequência ocorre quando um som que normalmente poderia ser ouvido é mascarado por outro, de maior intensidade, que encontra-se em uma frequência próxima. Ou seja, o limiar de audição é modificado (aumentado) na região próxima à frequência do som que causa o ocorrência do mascaramento, sendo que isto se deve à limitação da percepção de frequências do ouvido humano. O mascaramento em frequência depende da frequência em que o sinal se encontra, podendo variar de 100Hz a 4KHz. Em função deste comportamento, o que o método de compressão do MP3 faz é identificar casos de mascaramento em frequência e descartar sinais que não serão audíveis devido a este fenômeno. Além do mascaramento em frequência, temos ainda o mascaramento no tempo, sendo que este ocorre quando um som forte é precedido por um mais fraco que encontra-se em uma frequência próxima à do primeiro. Se o intervalo de tempo entre os dois for suficientemente pequeno, este som mais fraco não será percebido pela audição humana. Se um som é mascarado após um som mais forte, temos o chamado pós-mascaramento. No caso de um som ser mascarado antes do som mais forte, temos o que chamamos de pré-mascaramento. O pré-mascaramento existe só por um curto momento, cerca de 20ms, enquanto que o pós-mascaramento tem efeito por até 200ms. O método de compressão do MP3 utiliza-se portanto deste fenômeno, identificando casos onde o mesmo ocorre e descartando sons que seriam mascarados, o que permiter reduzir a informação de áudio consideravelmente sem mudança audível.

[editar] Licenças e patentes

A Thomson Consumer Electronics controla o licenciamento da patente do MPEG-1/2 Layer 3 nos poucos países que reconhecem patentes de software, tais como Estados Unidos da América e Japão.

Em setembro de 1998, o Instituto Fraunhofer enviou um comunicado a diversos desenvolvedores de programas MP3, exigindo cobrança de royalties por essa patente. O comunicado informava que o licenciamento era necessário para "distribuir e/ou vender decodificadores e/ou codificadores", e que os produtos não licenciados infringiam os "direitos sobre a patente do Instituto Fraunhofer e da Thomson. Para produzir, vender e/ou distribuir produtos que se utilizem do padrão MPEG-1/2 Audio Layer 3 e, portanto, de suas respectivas patentes, é necessário obter uma licença."

Tal iniciativa revelou a necessidade de promover formatos realmente livres, como o padrão ogg vorbis.

[editar] Streaming

O sistema empregado pelo MP3 também possibilita transmissões por streaming, onde o arquivo pode ser interpretado à medida em que é feito o download ou em que é baixado (não é necessário que o arquivo chegue inteiro para iniciar a reprodução).

[editar] Ver também

[editar] Ligações externas


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -