Przekątna
Z Wikipedii
Przekątna (dawniej: przekątnia) to odcinek łączący dowolne dwa wierzchołki wielokąta lub wielościanu, które nie leżą na jednym boku wielokąta lub na jednej ścianie wielościanu.
Liczba przekątnych w n-kącie (czyli wielokącie o n wierzchołkach) wynosi
- .
Liczba boków wielokąta o p przekątnych wynosi
Liczba sposobów, na które n-kąt wypukły może być podzielony nieprzecinającymi się oprócz końców przekątnymi na trójkąty to Cn − 2 (za pomocą Cn − 3 przekątnych), gdzie Cn to n-ta liczba Catalana.
Liczba rozłącznych obszarów na które przekątne dzielą n-kąt wypukły (o ile żadne trzy nie przecinają się w jednym punkcie w jego wnętrzu):
Początkowe wartości tego ciągu dla n=3,4,... wynoszą: 1,4,11,25,50,91,154,246 (sekwencja A006522 w OEIS)
Przekątna prostokąta o bokach długości a i b ma długość
Przekątna kwadratu o boku długości a ma długość
Długość dłuższej przekątnej sześciokąta o boku długości a wynosi
- .
Długość krótszej przekątnej sześciokąta o boku długości a wynosi
- .
Przekątna prostopadłościanu o krawędziach długości a, b i c ma długość
Przekątna sześcianu o krawędzi długości a ma długość
[edytuj] Zobacz też
[edytuj] Linki zewnętrzne
- (en) Polygon Diagonal w Mathworld