See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Rete neurale - Wikipedia

Rete neurale

Da Wikipedia, l'enciclopedia libera.

Una rete neurale è un insieme di neuroni biologici tra loro interconnessi.

Nell'uso moderno si intende però di solito con rete neurale una rete di neuroni artificiali, che cerca di simulare il funzionamento dei neuroni all'interno di un sistema informatico. Può essere composta sia da programmi che da hardware dedicato. Spesso viene utilizzata in congiunzione alla logica fuzzy.

Indice

[modifica] Fondamenti biologici

In quasi tutti gli organismi viventi sono presenti complesse organizzazioni di cellule nervose, con compiti di riconoscimento delle configurazioni assunte dall'ambiente esterno, memorizzazione e reazione agli stimoli provenienti dallo stesso. Il cervello umano rappresenta probabilmente il più mirabile frutto dell'evoluzione per le sue capacità di elaborare informazioni. Al fine di compiere tali operazioni, le reti biologiche si servono di un numero imponente di semplici elementi computazionali (neuroni) fittamente interconnessi in modo da variare la loro configurazione in risposta agli stimoli esterni: in questo senso può parlarsi di apprendimento ed i modelli artificiali cercano di catturare questo tratto distintivo della biologia.

Generalmente un neurone è costituito di 3 parti principali: il soma (corpo cellulare), l'assone (linea di uscita del neurone unica ma che si dirama in migliaia di rami) e il dendrite (linea di entrata del neurone che riceve segnali in ingresso da altri assoni tramite sinapsi). Il corpo cellulare fa una "somma pesata" (integrazione) dei segnali in ingresso. Se il risultato eccede un certo valore di soglia allora il neurone si attiva ed è prodotto un "potenziale di azione" che è mandato all'assone. Se il risultato non eccede il valore di soglia, il neurone rimane in uno stato di riposo. Una rete neurale artificiale riceve segnali esterni su uno strato di nodi (unità di elaborazione) d'ingresso, ciascuno dei quali è collegato con numerosi nodi interni, organizzati in più livelli. Ogni nodo elabora i segnali ricevuti e trasmette il risultato a nodi successivi.

[modifica] Funzionamento di una rete neurale feedforward

Le reti neurali si basano principalmente sulla simulazione di neuroni artificiali opportunamente collegati. Il modello rappresentato in figura è quello proposto da McCulloch e Pitts.

I suddetti neuroni ricevono in ingresso degli stimoli e li elaborano. L'elaborazione può essere anche molto sofisticata ma in un caso semplice si può pensare che i singoli ingressi vengano moltiplicati per un opportuno valore detto peso, il risultato delle moltiplicazioni viene sommato e se la somma supera una certa soglia il neurone si attiva attivando la sua uscita. Il peso indica l'efficacia sinaptica della linea di ingresso e serve a quantificarne l'importanza, un ingresso molto importante avrà un peso elevato, mentre un ingresso poco utile all'elaborazione avrà un peso inferiore. Si può pensare che se due neuroni comunicano fra loro utilizzando maggiormente alcune connessioni allora tali connessioni avranno un peso maggiore, fino a che non si creeranno delle connessioni tra l'ingresso e l'uscita della rete che sfruttano "percorsi preferenziali". Tuttavia però è sbagliato pensare che la rete finisca col produrre uno e un solo percorso di connessione: tutte le combinazioni infatti avranno un certo peso, e quindi contribuiscono al collegamento ingresso/uscita

I singoli neuroni vengono collegati alla schiera di neuroni successivi, in modo da formare una rete di neuroni. Normalmente una rete è formata da tre strati. Nel primo abbiamo gli ingressi (I), questo strato si preoccupa di trattare gli ingressi in modo da adeguarli alle richieste dei neuroni. Se i segnali in ingresso sono già trattati può anche non esserci. Il secondo strato è quello nascosto (H, hidden), si preoccupa dell'elaborazione vera e propria e può essere composto anche da più colonne di neuroni. Il terzo strato è quello di uscita (O) e si preoccupa di raccogliere i risultati ed adattarli alle richieste del blocco successivo della rete neurale. Queste reti possono essere anche molto complesse e coinvolgere migliaia di neuroni e decine di migliaia di connessioni.

[modifica] Storia

L'ampia varietà di modelli non può prescindere dal costituente di base, il neurone artificiale proposto da W.S. McCulloch e W. Pitts in un famoso lavoro del 1943, il quale schematizza un combinatore lineare a soglia, con dati binari multipli in entrata e un singolo dato binario in uscita: un numero opportuno di tali elementi, connessi in modo da formare una rete, è in grado di calcolare semplici funzioni booleane.

Nel 1958, F. Rosenblatt introduce il primo schema di rete neurale, detto perceptron (percettrone), antesignano delle attuali reti neurali, per il riconoscimento e la classificazione di forme, allo scopo di fornire un'interpretazione dell'organizzazione generale dei sistemi biologici. Il modello probabilistico di Rosenblatt è quindi mirato all'analisi, in forma matematica, di funzioni quali l'immagazzinamento delle informazioni, e della loro influenza sul riconoscimento dei patterns; esso costituisce un progresso decisivo rispetto al modello binario di McCulloch e Pitts, perché i suoi pesi sinaptici sono variabili e quindi il perceptrone è in grado di apprendere.

L'opera di Rosenblatt stimola una quantità di studi e ricerche, e suscita un vivo interesse e notevoli aspettative nella comunità scientifica, destinate tuttavia ad essere notevolmente ridimensionate allorché nel 1969 Marvin Minsky e Seymour A. Papert mostrano i limiti operativi delle semplici reti a due strati basate sul percettrone, e dimostrano l'impossibilità di risolvere per questa via molte classi di problemi, ossia tutti quelli non caratterizzati da separabilità lineare delle soluzioni: questo tipo di rete neurale non è abbastanza potente, infatti non è in grado di calcolare neanche la funzione or esclusivo (XOR). Di conseguenza, a causa di queste limitazioni, ad un periodo di euforia per i primi risultati della cibernetica (come veniva chiamata negli anni '60), segue un periodo di diffidenza durante il quale tutte le ricerche in questo campo non ricevono più alcun finanziamento dal governo degli Stati Uniti d'America;le ricerche sulle reti tendono, di fatto, a ristagnare per oltre un decennio, e l'entusiasmo iniziale risulta fortemente ridimensionato.

Il contesto matematico per addestrare le reti MLP (Multi-Layers Perceptron, ossia perceptrone multistrato) fu stabilito dal matematico americano Paul Werbos nella sua tesi di dottorato (Ph.D.) del 1974. Uno dei metodi più noti ed efficaci per l'addestramento di tale classe di reti neurali è il cosiddetto algoritmo di retropropagazione dell'errore (error backpropagation), proposto nel 1986 da David E. Rumelhart, G. Hinton e R. J. Williams, il quale modifica sistematicamente i pesi delle connessioni tra i nodi, così che la risposta della rete si avvicini sempre di più a quella desiderata. L'algoritmo di backpropagation (BP) è una tecnica d'apprendimento tramite esempi, costituente una generalizzazione dell'algoritmo d'apprendimento per il percettrone sviluppato da Rosenblatt nei primi anni ’60. Mediante questa tecnica era possibile, come detto, trattare unicamente applicazioni caratterizzabili come funzioni booleane linearmente separabili.

L'algoritmo di apprendimento si basa sul metodo della discesa del gradiente che permette di trovare un minimo locale di una funzione in uno spazio a N dimensioni. I pesi associati ai collegamenti tra gli strati di neuroni si inizializzano a valori piccoli e casuali e poi si applica la regola di apprendimento presentando alla rete dei pattern di esempio. Queste reti neurali sono capaci di generalizzare in modo appropriato, cioè di dare risposte plausibili per input che non hanno mai visto.

L'addestramento di une rete neurale di tipo BP avviene in due diversi stadi: forward-pass e backward-pass. Nella prima fase i vettori in input sono applicati ai nodi in ingresso con una propagazione in avanti dei segnali attraverso ciascun livello della rete (forward-pass). Durante questa fase i valori dei pesi sinaptici sono tutti fissati. Nella seconda fase la risposta della rete viene confrontata con l'uscita desiderata ottenendo il segnale d'errore. L'errore calcolato è propagato nella direzione inversa rispetto a quella delle connessioni sinaptiche. I pesi sinaptici infine sono modificati in modo da minimizzare la differenza tra l'uscita attuale e l'uscita desiderata (backward-pass).

Tale algoritmo consente di superare le limitazioni del percettrone e di risolvere il problema della separabilità non lineare (e quindi di calcolare la funzione XOR), segnando il definitivo rilancio delle reti neurali, come testimoniato anche dall'ampia varietà d'applicazioni commerciali: attualmente la BP rappresenta un algoritmo di largo uso in molti campi applicativi.

[modifica] Reti di Hopfield

Nel 1982, il fisico John J. Hopfield pubblica un articolo fondamentale in cui presenta un modello matematico comunemente noto appunto come rete di Hopfield: tale rete si distingue per "l'emergere spontaneo di nuove capacità computazionali dal comportamento collettivo di un gran numero di semplici elementi d'elaborazione". Le proprietà collettive del modello producono una memoria associativa per il riconoscimento di configurazioni corrotte e il recupero di informazioni mancanti.

Inoltre, Hopfield ritiene che ogni sistema fisico può essere considerato come un potenziale dispositivo di memoria, qualora esso disponga di un certo numero di stati stabili, i quali fungano da attrattore per il sistema stesso. Sulla base di tale considerazione, egli si spinge a formulare la tesi secondo cui la stabilità e la collocazione di tali attrattori sono proprietà spontanee di sistemi costituiti, come accennato, da considerevoli quantità di neuroni reciprocamente interagenti.

Tra le nuove idee messe in luce da Hopfield, quella più degna di menzione riguarda il capovolgimento del rapporto, fino allora esistente, tra calcolo e numeri: mentre era universalmente noto che il calcolo producesse numeri, assai meno banale era l'osservazione di Hopfield che, viceversa, anche i numeri potessero spontaneamente generare calcolo, e che questo potesse emergere quale attributo collettivo di sistemi interattivi siffatti.

Le applicazioni delle reti di Hopfield riguardano principalmente la realizzazione di memorie associative, resistenti all'alterazione delle condizioni operative, e la soluzione di problemi d'ottimizzazione combinatoriale. Da un punto di vista strutturale, la rete di Hopfield costituisce una rete neurale ricorrente simmetrica, di cui è garantita la convergenza.

Una rete ricorrente è un modello neurale in cui è presente un flusso bidirezionale d'informazioni; in altri termini, mentre nelle reti di tipo feedforward la propagazione dei segnali avviene unicamente, in maniera continua, nella direzione che conduce dagli ingressi alle uscite, nelle reti ricorrenti tale propagazione può anche manifestarsi da uno strato neurale successivo ad uno precedente, oppure tra neuroni appartenenti ad uno stesso strato, e persino tra un neurone e sé stesso.

[modifica] Reti di Elman

Un significativo e noto esempio di semplice rete ricorrente è dovuto a Jeffrey L. Elman (1990). Essa costituisce una variazione sul tema del percettrone multistrato, con esattamente tre strati e l'aggiunta di un insieme di neuroni "contestuali" nello strato d'ingresso. Le connessioni retroattive si propagano dallo strato intermedio (e nascosto) a tali unità contestuali, alle quali si assegna peso costante e pari all'unità.

In ciascun istante, gli ingressi si propagano nel modo tradizionale e tipico delle reti feedforward, compresa l'applicazione dell'algoritmo d'apprendimento (solitamente la backpropagation). Le connessioni retroattive fisse hanno come effetto quello di mantenere una copia dei precedenti valori dei neuroni intermedi, dal momento che tale flusso avviene sempre prima della fase d'apprendimento.

In questo modo la rete di Elman tiene conto del suo stato precedente, cosa che le consente di svolgere compiti di previsione di sequenze temporali che sono difficilmente alla portata dei percettroni multistrato convenzionali.

[modifica] Modalità d'apprendimento

Dal punto di vista della modalità d'apprendimento, è necessario operare una distinzione tra almeno tre diverse tipologie. In particolare, si può avere:

  • un apprendimento supervisionato (supervised learning), qualora si disponga di un insieme di dati per l'addestramento (o training set) comprendente esempi tipici d'ingressi con le relative uscite loro corrispondenti: in tal modo la rete può imparare ad inferire la relazione che li lega. Successivamente, la rete è addestrata mediante un opportuno algoritmo (tipicamente, la backpropagation che è appunto un algoritmo d'apprendimento supervisionato), il quale usa tali dati allo scopo di modificare i pesi ed altri parametri della rete stessa in modo tale da minimizzare l'errore di previsione relativo all'insieme d'addestramento. Se l'addestramento ha successo, la rete impara a riconoscere la relazione incognita che lega le variabili d'ingresso a quelle d'uscita, ed è quindi in grado di fare previsioni anche laddove l'uscita non è nota a priori; in altri termini, l'obiettivo finale dell'apprendimento supervisionato è la previsione del valore dell'uscita per ogni valore valido dell'ingresso, basandosi soltanto su un numero limitato di esempi di corrispondenza (vale a dire, coppie di valori input-output). Per fare ciò, la rete deve essere infine dotata di un'adeguata capacità di generalizzazione, con riferimento a casi ad essa ignoti. Ciò consente di risolvere problemi di regressione o classificazione.
  • un apprendimento non supervisionato (unsupervised learning), basato su algoritmi d'addestramento che modificano i pesi della rete facendo esclusivamente riferimento ad un insieme di dati che include le sole variabili d'ingresso. Tali algoritmi tentano di raggruppare i dati d'ingresso e di individuare pertanto degli opportuni cluster rappresentativi dei dati stessi, facendo uso tipicamente di metodi topologici o probabilistici. L'apprendimento non supervisionato è anche impiegato per sviluppare tecniche di compressione dei dati.
  • un apprendimento per rinforzo (reinforcement learning), nel quale un opportuno algoritmo si prefigge lo scopo di individuare un certo modus operandi, a partire da un processo d'osservazione dell'ambiente esterno; ogni azione ha un impatto sull'ambiente, e l'ambiente produce una retroazione che guida l'algoritmo stesso nel processo d'apprendimento. Tale classe di problemi postula un agente, dotato di capacità di percezione, che esplora un ambiente nel quale intraprende una serie di azioni. L'ambiente stesso fornisce in risposta un incentivo o un disincentivo, secondo i casi. Gli algoritmi per il reinforcement learning tentano in definitiva di determinare una politica tesa a massimizzare gli incentivi cumulati ricevuti dall'agente nel corso della sua esplorazione del problema. L'apprendimento con rinforzo differisce da quello supervisionato poiché non sono mai presentate delle coppie input-output di esempi noti, né si procede alla correzione esplicita di azioni subottimali. Inoltre, l'algoritmo è focalizzato sulla prestazione in linea, la quale implica un bilanciamento tra esplorazione di situazioni ignote e sfruttamento della conoscenza corrente.

[modifica] Apprendimento Hebbiano (1949)

L'algoritmo di apprendimento Hebbiano si basa sul semplice principio che se due neuroni si attivano contemporaneamente, la loro interconnessione deve essere rafforzata.

Δwi = ηxin,ixout dove xin,i,

dove i è l'imo ingresso e η è il tasso di apprendimento (0 < η < = 1).

Hebb’s postulate: The efficacy of a particular synapse changes if and only if there is a high triggering activity of the neuron synchronism with a high input transmission at the synapse in question

Esempio di procedura 1) Inizializza i pesi a zero.

2) Prepara un pattern d’ingresso a cui corrisponde un pattern d’uscita noto.

3) Calcola Δwi = ηxin,ixout e quindi aggiorna wi = wi + Δwi.

4) Ripeti gli step 2) e 3) per ogni pattern j noto

wi = wi)j
j

.

In questo modo le connessioni possono solo irrobustirsi. Le connessioni si considerano irrobustite quando le unità presinaptica e postsinaptica sono d’accordo, altrimenti si indeboliscono. Si considerano funzioni bipolari (-1,1) invece che booleane (0,1).

[modifica] Algoritmo di Backpropagation

L'algoritmo di backpropagation è utilizzato nell'apprendimento con supervisione. Esso permette di modificare i pesi delle connessioni in modo tale che si minimizzi una certa funzione errore E. Tale funzione dipende dal vettore h-esimo di output \overline{out}^h restituito dalla rete, dato il vettore h-esimo di ingresso \overline{x}^h e dal vettore h-esimo di output \overline{y}^hche noi desideriamo (che fa parte del training set). Il training set è dunque un insieme di N coppie di vettori (\overline{x}^h,\overline{y}^h), con h = 1,...,N. La funzione errore che si deve minimizzare si può scrivere come: \frac{1}{2}\sum_h \sum_k(out_{k}^{h}-y_{k}^{h})^{2}, dove l'indice k rappresenta il valore corrispondente al k-esimo neurone di output. E è una funzione dipendente dai pesi (che in generale variano nel tempo). Per minimizzare E(w) si può usare l'algoritmo della discesa del gradiente (gradient-descent). L'algoritmo parte da un punto generico \overline{x}(0) e calcola il gradiente \nabla f(\overline{x}^{0}). Il gradiente dà la direzione verso cui muoversi lungo la quale ho il massimo incremento (o decremento se considero -\nabla). Definita la direzione ci si muove di una distanza η predefinita a priori e si trova un nuovo punto \overline{x}(1) sul quale è calcolato nuovamente il gradiente. Si continua iterativamente finché il gradiente non è nullo. L'algoritmo di backpropagation può essere diviso in due passi:

  • Forward pass: l'input dato alla rete è propagato al livello successivo e così via ai livelli successivi (il flusso di informazioni si sposta in avanti, cioè forward). Si calcola dunque E(w), l'errore commesso.
  • Backward pass: L'errore fatto dalla rete è propagato all'indietro (backward) e i pesi sono aggiornati in maniera appropriata.

[modifica] Mappe auto-organizzanti o reti SOM (Self-Organizing Maps)

Infine, un’ultima interessante tipologia di rete è costituita dalla cosiddetta mappa auto-organizzante o rete SOM (Self-Organizing Map). Tale innovativa tipologia di rete neurale è stata elaborata da Teuvo Kohonen dell’Università Tecnologica di Helsinki; il suo algoritmo d’apprendimento è senza dubbio una brillante formulazione di apprendimento non supervisionato, e ha dato luogo a un gran numero di applicazioni nell’ambito dei problemi di classificazione. Una mappa o rete SOM è basata essenzialmente su un reticolo o griglia di neuroni artificiali i cui pesi sono continuamente adattati ai vettori presentati in ingresso nel relativo insieme di addestramento. Tali vettori possono essere di dimensione generica, anche se nella maggior parte delle applicazioni essa è piuttosto alta. Per ciò che riguarda le uscite della rete, al contrario, ci si limita di solito ad una dimensione massima pari a tre, il che consente di dare luogo a mappe 2D o 3D. In termini più analitici, l’algoritmo può essere agevolmente descritto, come accennato, nei termini di un insieme di neuroni artificiali, ciascuno con una precisa collocazione sulla mappa rappresentativa degli output, che prendono parte ad un processo noto come winner takes all (Il vincitore piglia tutto), al termine del quale il nodo avente un vettore di pesi più vicino ad un certo input è dichiarato vincitore, mentre i pesi stessi sono aggiornati in modo da avvicinarli al vettore in ingresso. Ciascun nodo ha un certo numero di nodi adiacenti. Quando un nodo vince una competizione, anche i pesi dei nodi adiacenti sono modificati, secondo la regola generale che più un nodo è lontano dal nodo vincitore, meno marcata deve essere la variazione dei suoi pesi. Il processo è quindi ripetuto per ogni vettore dell’insieme di training, per un certo numero, usualmente grande, di cicli. Va da sé che ingressi diversi producono vincitori diversi. Operando in tal modo, la mappa riesce alfine ad associare i nodi d’uscita con i gruppi o schemi ricorrenti nell’insieme dei dati in ingresso. Se questi schemi sono riconoscibili, essi possono essere associati ai corrispondenti nodi della rete addestrata. In maniera analoga a quella della maggioranza delle reti neurali artificiali, anche la mappa o rete SOM può operare in due distinte modalità:

  • durante la fase di addestramento si costruisce la mappa, pertanto la rete si configura ed organizza tramite un processo competitivo. Alla rete deve essere fornito il numero più grande possibile di vettori in ingresso, tali da rappresentare fedelmente la tipologia di vettore che le sarà eventualmente sottoposta nella seconda fase;
  • nel corso della seconda fase ogni nuovo vettore d’ingresso può essere velocemente classificato o categorizzato, collocandolo in automatico sulla mappa ottenuta nella fase precedente. Vi sarà sempre un unico neurone vincente, quello il cui vettore dei pesi giace a minor distanza dal vettore appena sottoposto alla rete; tale neurone può essere determinato semplicemente calcolando la distanza euclidea tra i due vettori in questione.

[modifica] Pregi

Le reti neurali per come sono costruite lavorano in parallelo e sono quindi in grado di trattare molti dati. Si tratta in sostanza di un sofisticato sistema di tipo statistico dotato di una buona immunità al rumore; se alcune unità del sistema dovessero funzionare male, la rete nel suo complesso avrebbe delle riduzioni di prestazioni ma difficilmente andrebbe incontro ad un blocco del sistema. I software di ultima generazione dedicati alle reti neurali richiedono comunque buone conoscenze statistiche; il grado di apparente utilizzabilità immediata non deve trarre in inganno, pur permettendo all'utente di effettuare da subito previsioni o classificazioni, seppure con i limiti del caso. Da un punto di vista industriale, risultano efficaci quando si dispone di dati storici che possono essere trattati con gli algoritmi neurali. Ciò è di interesse per la produzione perché permette di estrarre dati e modelli senza effettuare ulteriori prove e sperimentazioni.

[modifica] Difetti

I modelli prodotti dalle reti neurali, anche se molto efficienti, non sono spiegabili in linguaggio simbolico umano: i risultati vanno accettati "così come sono", da cui anche la definizione inglese delle reti neurali come "black box": in altre parole, a differenza di un sistema algoritmico, dove si può esaminare passo-passo il percorso che dall'input genera l'output, una rete neurale e' in grado di generare un risultato valido, o comunque con una alta probabilità di essere accettabile, ma non è possibile spiegare COME e PERCHE' tale risultato sia stato generato. Come per qualsiasi algoritmo di modellazione, anche le reti neurali sono efficienti solo se le variabili predittive sono scelte con cura. Non sono in grado di trattare in modo efficiente variabili di tipo categorico (per esempio, il nome della città) con molti valori diversi. Necessitano di una fase di addestramento del sistema che fissi i pesi dei singoli Neuroni e questa fase può richiedere molto tempo, se il numero dei record e delle variabili analizzate è molto grande. Non esistono teoremi o modelli che permettano di definire la rete ottima, quindi la riuscita di una rete dipende molto dall'esperienza del creatore.

[modifica] Utilizzi

Le reti neurali vengono solitamente usate in contesti dove i dati possono essere parzialmente errati oppure dove non esistano modelli analitici in grado di affrontare il problema. Un loro tipico utilizzo è nei software di OCR, nei sistemi di riconoscimento facciale e più in generale nei sistemi che si occupano di trattare dati soggetti a errori o rumore. Esse sono anche uno degli strumenti maggiormente utilizzati nelle analisi di Data mining. Le reti neurali vengono anche utilizzate come mezzo previsionistico dell'analisi finanziaria o meteorologica. Negli ultimi anni è aumentata notevolmente la loro importanza anche nel campo della bioinformatica nel quale vengono utilizzate per la ricerca di pattern funzionali e/o strutturali in proteine e acidi nucleici. Mostrando opportunamente una lunga serie di input (fase di training o apprendimento), la rete è in grado di fornire l'output più probabile.

[modifica] Bibliografia

  • Patarnello S.,Le reti neuronali, ISBN 9788820468194, Milano, Franco Angeli, 1991.
  • Giampiero Fabbri, Raimondello Orsini, Reti neurali per le scienze economiche, ISBN 88-7021-656-X, Franco Muzzio editore 1993.
  • Meraviglia, C. (2001) Le reti neurali nella ricerca sociale, Bologna, Il Mulino, ISBN 9788846430441
  • Floreano, D.; Mattiussi, C. (2002) Manuale sulle reti neurali, Bologna, Il Mulino, ISBN 9788815085047
  • Pessa, E. (2004) Statistica con le reti neurali, Roma, Di Renzo Editore, ISBN 9788883230745

[modifica] Altri progetti

[modifica] Collegamenti esterni


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -