ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Tömegmegmaradás - Wikipédia

Tömegmegmaradás

A Wikipédiából, a szabad enciklopédiából.

A tömeg/anyagmegmaradás törvénye (a Lomonoszov-Lavoisier-törvény) kimondja, hogy egy anyagi rendszer tömege állandó marad, függetlenül a rendszeren belül lejátszódó folyamatoktól. Ekvivalens állítás, hogy az anyag megváltoztathatja a megjelenési formáját, de nem teremthető és nem tüntethető el. Ebből következik, hogy egy kémiai folyamatban a reagensek tömegösszege egyenlő a termékek tömegösszegével.

A tömegmegmaradás nem mindig teljesül, és ez függ az anyag és a tömeg definíciójától. A modern fizikában a tömeg és az anyag ekvivalensek az energiával és így az energiamegmaradás – ami mindig teljesül – magában foglalja az anyagot és energiát.

Tartalomjegyzék

[szerkesztés] Tömegmegmaradás a speciális relativitáselméletben

Az anyag – sok energiatípust nem beleértve – általában nem marad meg a speciális relativitáselméletben. Az hogy a tömeg megmarad-e, attól függ, milyen tömegre gondolunk, és hogyan mérjük.

A relativisztikus tömeg vagy mozgási tömeg ekvivalens a relativisztikus energiával – a fizikusok nem is használják ezeket a tömegfogalmakat, csak az energiát – tehát ez a tömegtípus minden folyamatban megmarad, mivel a teljes energia megmarad.

Az invariáns tömeg megfigyelőtől és vonatkoztatási rendszertől függetlenül megmarad. Az invariáns tömeget nyugalmi tömegnek is hívjuk, még akkor is, ha egy rendszer – aminek az össztömegéről szó van – alkotórészei nincsenek nyugalomban, hanem mozognak (pl. rezegnek stb.). Ez is megmarad minden tehetetlenségi megfigyelő számára, amíg a rendszer zárt. A fizikusok az invariáns vagy nyugalmi tömeget hívják egyszerűen tömegnek.

Néha egy-egy tömegfajta nem marad meg relativisztikus folyamatokban, pl.:

1) Amikor invariáns tömeg (mint aktív energia számos formája) elhagyhatja a rendszert anélkül, hogy ezt nyomon követnénk. A rendszer teljes lezárása (hő és sugárzások szempontjából) szükséges a tömegmegmaradáshoz. Ha a tömegeket mindig standard hőmérsékleten mérjük, akkor hő formájában tömeg távozhat a rendszerből.

2) Nem marad meg az invariáns tömeg akkor sem, ha azt komponensenként adjuk össze. Azaz ha mondjuk egy részecske elbomlik két másikra, akkor a kiinduló részecske invariáns tömege akkora, mint a két bomlástermék együttes invariáns tömege és nagyobb, mint a bomlástermékek invariáns tömegének összege. A különbség a bomlástermékek mozgási energiájaként jelenik meg.

[szerkesztés] Kvantitatív példa a kémiában

A kémiai folyamatok esetén a tömegmegmaradás nagyon jó közelítéssel alkalmazható, mivel a reakcióban résztvevő atomok és molekulák tömege jóval nagyobb, mint a kémiai folyamatok – az atommagok és elektronok közötti elektromágneses kölcsönhatásából származó – energiájának tömegegyenértéke. Pl. egy gramm TNT-ből 4,61 J energia szabadul fel, amikor felrobban. Egy gramm TNT (vagy akármi más) nyugalmi energiája viszont 90 TJ, azaz kb. 20 billiárdszor nagyobb.

[szerkesztés] Történeti fejlődés és fontosság

A tömegmegmaradás törvényét (ami ténylegesen a súlymegmaradás, ha a súlyt korrekten mérjük) Antoine Lavoisier fogalmazta meg világosan 1789-ben, akit emiatt gyakran a modern kémia atyjának is tartanak. Mindazonáltal Mihail Vasziljevics Lomonoszov már 1748-ban hasonló gondolatokat fejtett ki és bizonyított kísérletileg. Történetileg a tömeg és súly megmaradása homályban maradt évezredekig, amíg a vákuumpumpa lehetővé nem tette a gázok súlyának megmérését mérlegen. Amint felismerték, a tömegmegmaradás kulcsfontosságú szerepet játszott az alkímiától a modern kémiához való fordulásban. Ezután a gázoknak a földi atmoszférában való lebegése már nem gátolta meg az anyagok egymásba alakulásának vizsgálatát.

[szerkesztés] Lásd még


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -