ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
CP-szimmetria - Wikipédia

CP-szimmetria

A Wikipédiából, a szabad enciklopédiából.

A CP-szimmetria a részecskefizika területén azt jelenti, hogy egy folyamat valószínűsége a résztvevő részecskéken végrehajtott C (antirészecskékre cserélés) és P (térbeli tükrözés) transzformációk után azonos marad. Az erős és elektromágneses kölcsönhatásokban a C, a P és a CP transzformáció szimmetria.

A CP-szimmetria fontos szerepet játszik azokban a kozmológiai elméletekben, melyek annak a ténynek a magyarázatára tesznek kísérletet, mely szerint a jelenlegi Világegyetemben több az anyag, mint az antianyag. A CP-sértést a gyenge kölcsönhatás esetén 1964-ben a semleges kaonok bomlásánál fedezte fel James Cronin és Val Fitch, melyért 1980-ban fizikai Nobel-díjat kaptak. A CP-sértés az elméleti és kísérleti kutatások fontos területe maradt a mai napig.

Tartalomjegyzék

[szerkesztés] Mi az a CP?

A CP két fizikai szimmetriatranszformáció szorzata: C a töltéstükrözés (töltéskonjugáció), ami egy részecskét az antirészecskéjébe transzformál, P pedig a töltéstükrözés (paritás), ami az összes térkoordináta előjelének megfordítását, a fizikai rendszer tükörképébe való áttranszformálást jelenti. Az erős kölcsönhatás és az elektromágneses kölcsönhatás invariáns CP-transzformációk alatt, de a szimmetria enyhén sérül gyenge kölcsönhatás esetén. Történetileg a CP-szimmetriát a "rend helyreállítása végett" javasolták a paritássértés felfedezése után az 1950-es években.

A paritásmegmaradás sugalmazója az a tény volt, hogy a részecskefizika (akkori) egyenletei invariánsak voltak a tükrözésre. Ez ahhoz a jóslathoz vezetett, hogy egy "tükörreakció" (akár kémiai reakció vagy radioaktív bomlás) ugyanolyan gyakran következik be, mint az eredeti reakció. Az 1940-es évekig a fizikusok meg voltak győződve arról, hogy minden folyamat mutatja a paritásmegmaradást. Az 1950-es években azonban találtak néhány kivételt a P-szimmetria alól a radioaktív folyamatok területén, amikor a folyamat és a tükörfolyamat más valószínűséggel ment végbe.

Összességében a kvantummechanika szimmetriája helyreállítható, ha egy másik S szimmetriát találunk úgy, hogy a kombinált PS-szimmetria sértetlen marad. A Hilbert-térnek ezen meglehetősen kifinomult vonását röviddel a P-sértés felfedezése után ismerték fel, és a javaslat szerint a töltéskonjugáció volt ez a kívánatos szimmetria, ami a rendet helyreállíthatja.

Egyszerűen szólva a töltéskonjugáció a részecskék és antirészecskék közötti szimmetria, azaz a CP-szimmetria az anyag és antianyag közötti igazi szimmetriaként lett javasolva.

[szerkesztés] CP-sértés

A két fenti doboz-diagram az a két Feynman-diagram ami a vezető hozzájárulást adja a kaon-antikaon oszcillációhoz
A két fenti doboz-diagram az a két Feynman-diagram ami a vezető hozzájárulást adja a kaon-antikaon oszcillációhoz

1964-ben James Cronin és Val Fitch világos bizonyítékot talált a CP-sértésre egy kaonbomlási kísérletben, amiért 1980-ban fizikai Nobel-díjat kaptak. Felfedezésük megmutatta, hogy a gyenge kölcsönhatás együtt is sérti a tükrözési és töltésszimmetriát. Ez sokkolta a részecskefizikát és megnyitotta az ajtót olyan kérdések előtt, amik még mindig a részecskefizika és kozmológia homlokterében vannak. A CP-szimmetria hiánya, de ugyanakkori csak nagyon kis sérülése nagy talány volt.

Csak egy általánosabb szimmetria, a CPT-szimmetria maradt meg a fizikai folyamatok számára. A T az időtükrözést jelenti, ami a mozgás megfordításának felel meg. A T-szimmetria azt jelenti, hogy ha egy mozgás megengedett, akkor a megfordítottja is az. A CPT-szimmetriát egzaktnak gondoljuk, ezért a CP-sértés egyben T-sértést is jelent. A CPT-szimmetria az egyik alapvető tétele a kvantumtérelméletnek.

A legutóbbi időkben kísérletek sora (BaBar a SLAC-ben, Belle a KEK-ben) megfigyelte a CP-sértést a B-mezonok segítségével. Ezelőtt logikus lehetőség volt, hogy a CP-sértés csak a kaonok sajátja, de bebizonyosodott, hogy a standard modell a CP-sértő.

A standard modell CP-sértését a CKM-mátrixban levő komplex fázis okozza. Szükséges feltétel a komplex fázis létéhez és a CP-sértéshez a legalább három kvarkgeneráció léte.

A kvantumszíndinamikában nincs ismert kísérleti bizonyítéka a CP-sértésnek. Az erős CP-probléma az a kérdés, miért nincs ilyen megfigyelt sértés, amikor az elmélet azt elvileg lehetővé teszi.

[szerkesztés] Erős CP-probléma

A részecskefizika talányos kérdése az erős CP-probléma, azaz hogy a kvantumszíndinamika (QCD) miért nem látszik sérteni a CP-szimmetriát.

A QCD nem sérti olyan könnyen a CP-szimmetriát, mint az elektrogyenge elmélet. Utóbbiban a mértékmezők fermionmezőkből konstruált királis áramokhoz csatolódnak, míg a QCD-ben a gluonok vektoráramokhoz. A QCD-szektorban egyetlen kísérlet sem utal a sértésre. Pl. egy általános CP-sértés tizenkét nagyságrenddel nagyobb elektromos dipólmomentumot jósolna a neutronnak, mint ahol a jelenlegi kísérleti felső határ tart.

Ez probléma, mivel a QCD Lagrange-függvényében ott vannak azok a tagok, amik képesek sérteni a CP-szimmetriát:

{\mathcal L} = -\frac{1}{4} {\mathrm {tr}\,} F_{\mu\nu}F^{\mu\nu}-\frac{n_f g^2\theta}{32\pi^2}
{\mathrm {tr}\,}F_{\mu\nu}\tilde F^{\mu\nu}+\bar \psi(i\gamma^\mu D_\mu - m
e^{i\theta'\gamma_5})\psi

A QCD θ-szög és királis kvarktömeg-fázis θ' nemnulla megválasztása esetén azt várjuk, hogy a CP-szimmetria sérül. Általában feltesszük, hogy θ'-t bele lehet konvertálni hozzájárulásként a teljes effektív \tilde\theta-szögbe, de megmarad a kérdés, hogy a természet miért választ ilyen kis számot egy egységnyi nagyságrendű helyett. A θ-szög speciális megválasztása, ami nagyon közel van nullához egy példa a fizikai finomhangolásra.

A leghíresebb megoldás a problémára a Peccei-Quinn-elmélet ami új skalár részecskéket vezet be, amiket axionoknak hív.

[szerkesztés] CP-sértés és az Univerzum létezése

A fizika egyik megoldatlan elméleti kérdése, hogy miért áll az univerzum főleg anyagból ahelyett, hogy egyenlő mértékben tartalmazna anyagot és antianyagot. Kézenfekvő feltevések sorának segítségével demonstrálható, hogy a megfigyelt anyag-antianyag arányt létrehozhatta az ősrobbanás utáni néhány másodperc CP-sértése.

A standard modellben az ősrobbanás egyenlő mennyiségben hozott volna létre anyagot és antianyagot a CP-szimmetria fennállása esetén, és így teljesen meg is kellett volna semmisülnie mindkettőnek, a protonoknak az antiprotonokkal, az elektronoknak a pozitronokkal, a neutronoknak az antineutronokkal és így tovább minden elemi részecskére. A végén az univerzum fotonok tengerévé vált volna minden anyag nélkül. Mivel nyilvánvalóan nem ez a helyzet, az ősrobbanás alatt a fizikai törvényeknek másképpen kellett hatniuk az anyagra, mint az antianyagra, és mivel a CP-szimmetria azt jelenti, hogy ugyanúgy hatnak, a szimmetria nem lehet igaz minden esetre.

Ezért követelmény, hogy egy olyan erőnek kellett hatnia, ami meggátolta a barionszám és a leptonszám megmaradását. A gyenge erő csak kismértékű sértést tud okozni, ami legfeljebb egy galaxisnyi tömeget tudott volna létrehozni.

Mivel a standard modell nem jósolja meg pontosan ezt az ellentmondást (ahogy a sötét anyag és a sötét energia problémáját sem), úgy látszik, a standard modell nem teljes vagy a fizika egyébként bajban van. Ez óriási érdeklődést keltett a kísérleti részecskefizika iránt, és reményeket az asztrofizika számos elméletében – mint a felfúvódási elmélet és a bariogenezis –, hogy a sértést megmagyarázzák.

[szerkesztés] Lásd még

[szerkesztés] Külső hivatkozások


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -