Fonction êta de Dirichlet
Un article de Wikipédia, l'encyclopédie libre.
La fonction êta de Dirichlet peut être définie par
où est la fonction zêta de Riemann. Néanmoins, elle peut aussi être utilisée pour définir la fonction zêta. Elle possède une expression en série de Dirichlet, valide pour tout nombre complexe s avec une partie réelle positive, donnée par
- .
Tandis que ceci est convergent seulement pour s avec une partie réelle positive, elle est sommable au sens d'Abel pour tout nombre complexe, qui servent à définir la fonction êta comme une fonction entière, et montre que la fonction zêta est méromorphe avec un pôle singulier en s = 1.
De manière équivalente, nous pouvons commencer par définir
qui est aussi définie dans la région de la partie réelle positive. Ceci présente la fonction êta comme une transformation de Mellin.
Hardy a donné une démonstration simple de l'équation fonctionnelle pour la fonction êta, qui est
- .
À partir de cela, on a immédiatement l'équation fonctionnelle de la fonction zêta également, cela nécessite d'étendre la définition de la fonction êta au plan complexe entier.
[modifier] Méthode de Borwein
Peter Borwein a utilisé des approximations impliquant les polynômes de Tchebychev pour concevoir une méthode pour une évaluation efficace de la fonction êta. Si alors
où le terme erroné est borné par
où .
[modifier] Publications
Borwein, P., An Efficient Algorithm for the Riemann Zeta Function, Constructive experimental and nonlinear analysis, CMS Conference Proc. 27 (2000), 29-34 ou http://www.cecm.sfu.ca/~pborwein/