See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Comptabilité analytique - Wikipédia

Comptabilité analytique

Un article de Wikipédia, l'encyclopédie libre.

La comptabilité analytique ou comptabilité de gestion est un outil d'évaluation qui a pour fonction de calculer les coûts (selon le PCG 1982), elle recense, suit et communique les informations sur les coûts (dont le coût de production et de revient) générés au sein de l'organisation.
La comptabilité analytique a pour vocation d'analyser des offres (marketing) et leurs conséquences sur l'organisation (sous la co-responsabilité de la gestion de la qualité).

Sommaire

[modifier] Histoire

La connaissance des coûts est, depuis le début de la révolution industrielle, un impératif de base de toute prise de décision. La notion de comptabilité industrielle manifesta très tôt cette nécessité et se traduisit par la mise en place par les comptables, mais aussi par les ingénieurs et les techniciens, de systèmes de calcul aptes à les aider dans leur gestion. Les historiens recensent ainsi des systèmes précurseurs de comptabilité industrielle dès la fin du XVIIe siècle en Grande Bretagne (notamment dans les forges et fonderies de la région de Sheffield). En France une doctrine apparaît à partir des années 1860 et on situe en 1885 l'apparition du premier manuel.

Appelée d'abord comptabilité industrielle puis comptabilité analytique d'exploitation, la comptabilité de gestion désigne l'ensemble des éléments du système comptable considérés du point de vue de l'intérêt qu'ils présentent pour la gestion interne.

Entre 1947 et 1999, les rédacteurs du plan comptable général français ont voulu normaliser la comptabilité analytique au même titre que la comptabilité financière (ou comptabilité générale). Depuis 1999, la comptabilité de gestion n'est plus normalisée. Ses méthodes et son organisation doivent être adaptées aux particularités et aux besoins spécifiques de chaque entreprise ou organisation. De plus, l'objectif de la normalisation est de faciliter les comparaisons interentreprises. Or, cet objectif ne concerne pas la comptabilité de gestion qui est à usage interne et dont les résultats sont rarement divulgués.

[modifier] Enjeux

  • La comptabilité analytique peut évaluer globalement l'entreprise par le coût de revient en intégrant en plus du coût de production, les charges hors production (coût de distribution, et autres charges non imputées). Le coût de revient est plus pertinent que le coût de production si les frais de distribution sont forts et peu répartissable directement par produit.

L'analyse n'est possible que si la méthode utilisée pour le calcul des coûts correspond à la nature de l'entreprise (d'où l'existence de plusieurs méthodes de calcul). Il n'est pas envisageable de traiter une entreprise de production de la même manière qu'une entreprise qui intègre des services dans son offre marketing. De plus, le décideur doit prendre les indicateurs déterminés comme des indicateurs de seconde main. L'entreprise doit d'abord vendre et couvrir les frais fixes et ceci en accord avec la stratégie d'entreprise d'où l'utilité de la comptabilité analytique pour le marketing. L'évolution du chiffre d'affaires et le taux de couverture des frais fixes par le coût (déterminé selon les diverses méthodes) sont des indicateurs préférentiels (ainsi que l'idée d'utiliser les fonctions attendues par le client comme guide pour l'évaluation de coûts cibles). Les entreprises en difficulté n'ont donc que peu d'intérêt à utiliser la comptabilité analytique ainsi que les services financiers dont l'objet est la recherche de la rentabilité et non les économies d'échelle. L'analyse du coût est donc une donnée intermédiaire à utiliser par le service marketing, et non une finalité directement analysable, sauf dans le cas où les frais fixes et indirects sont très faibles dans l'entreprise.

[modifier] Méthodes de calcul des coûts

[modifier] La méthode des coûts complets

Déjà utilisée au XVIe siècle, la méthode des coûts complets consiste à calculer les coûts de production des produits (biens ou services) en répartissant les charges directes et indirectes de l'entreprise (celles qui peuvent être affectées directement ou indirectement à un centre de répartition). A noter qu'il faut prendre garde d'exclure les frais de distribution qui ne sont pas du domaine de la production. Ajouter les coûts hors production au coût de production permet de trouver le coût de revient.

La répartition des charges directes ne présente pas de difficultés, car elles peuvent être imputées directement aux produits. Les charges indirectes se répartissent dans des centres selon des clefs de répartition. Ces clefs appelées unité d'oeuvre, qui sont en fait des rapports au produit, sont fixées plus ou moins arbitrairement. Il n'existe, en effet, pas de clefs pouvant être utilisées dans tous les cas. Une clef fréquemment utilisée pour répartir les charges indirectes des ateliers de production est l'heure de main-d'œuvre directe (HMOD). La somme des charges réparties divisée par le nombre de produit permet de trouver le coût de production unitaire qui sert directement comme valeur à utiliser pour les stocks. Ce coût permet en effet de déterminer le coût d'entrée par les méthodes CUMP (coût unitaire moyen pondéré) ou PEPS (premier entré premier sorti) par exemple nécessaires à la valorisation des stocks.

Une limite de la méthode des coûts complets est l'emploi massif de la répartition des charges indirectes ce qui aboutie à des effets de subventionnements masquant des différences de profitabilité entre produits. La fixation de ces clefs est le principal reproche fait à la méthode. En effet, elle suppose que les charges indirectes sont réparties de manière linéaire selon les produits ce qui n'est pas le cas lorsque les produits sont hétérogènes. Cette imprécision dans la méthode conduit à imputer plus de charges indirectes sur un produit et donc à alourdir son coût au profit d'un autre produit, selon le principe des vases communicants. Selon le choix de la clé de répartition, le résultat peut être parfois très différent et mener à des décisions erronées. Cette imprécision est d'autant plus importante que la proportion des charges indirectes est très grande.

L'utilisation de cette méthode gagne donc en pertinence lorsque le processus de production est stable, le personnel est peu polyvalent, les produits sont standards car la répartition des charges indirectes devient plus pertinente.

[modifier] Méthode des coûts directs

Cette méthode permet de calculer les économies d'échelle prévisionnelles de l'entreprise, notamment en fonction des prévisions de vente.

Elle consiste à imputer à chaque produit les charges variables correspondantes. La principale difficulté de cette méthode provient des charges variables indirectes. La lourdeur de l'analyse pousse à ne considérer variable que les charges variables et directes. L'utilisation de la méthode gagne en pertinence si la décomposition en coût variable et coût fixe est fiable et que la part des coûts variables est importante.

Après avoir réalisé la répartition des coûts variables par produits, il est possible de réaliser des analyses de rentabilité. La détermination de la marge sur coût variable par produit (chiffre d'affaires moins les charges variables correspondantes) peut en représenter une mesure. Cette marge sur coût variable reflète la participation de chaque produit à la couverture des charges fixes, évitant ainsi les effets de subventionnement observés lors de la mise en place de la méthode des coûts complets. Il est ainsi possible de calculer un seuil de rentabilité représentant la quantité vendue (ou le chiffre d'affaires) pour laquelle les charges fixes sont entièrement couvertes par la marge sur coût variable (MCV). Le résultat attendu est nul à ce seuil car la marge sur coût variable est égale au coût fixe. Une représentation graphique peut être réalisée mettant en valeur le moment où le produit devient rentable en fonction de la quantité vendue. C'est une représentation des économies d'échelle réalisées par l'augmentation des ventes par rapport aux frais fixes. Le coût de revient appelé "direct costing" correspond au prix de vente en dessous duquel l'entreprise ne doit jamais descendre même en période de faible activité sous peine de créer une perte. Cette méthode est aussi utile pour évaluer la contribution de chaque produit ou groupe de produits à la prise en charge des frais indirects (qui sont souvent appelés "frais de structure").

La méthode du direct costing évolué (coûts spécifiques) est une variante du direct costing rattachant à chaque produit des charges fixes spécifiques.

[modifier] Méthode ABC (Activity-based costing)

La méthode ABC consiste à calculer le coût de revient des produits en disant que ce ne sont plus les produits qui consomment les ressources mais les activités qui seront à leur tour consommées par les produits. Cette méthode adopte une vision transversale de l'entreprise et non plus hiérarchique comme les deux précédentes. Elle se base sur un organigramme opérationnel, c'est-à-dire celui qui correspond réellement aux processus de l'entreprise. Habituellement, l'activité est une composante d'un processus. Les entreprises analysent donc leurs processus internes au travers des activités qui les composent.

Cette méthode couramment utilisée a vu le jour lorsqu'un besoin d'informations plus précises est apparu avec l'évolution des industries modernes : du modèle "fordien" aux modèles actuels. Plus complexe et transversale, la proportion coûts directs/coûts indirects dans le coût d'un produit s'est trouvée inversée. Si, au début du XXe siècle les coûts directs représentaient plus de 70% du coût total d'un produit, aujourd'hui, ce sont les coûts indirects qui représentent la majeure partie du coût.

Le principe de la méthode est le suivant : les objets de coûts (produits, clients...) consomment des activités qui, elles-mêmes, consomment des ressources. En pratique, les différentes étapes pour la mise en place d'une démarche ABC sont les suivants :

  • Modéliser les processus de l'entreprise pour en appréhender les circuits. Ces activités peuvent être, par exemple : le traitement d'une commande, la gestion des références, ou encore la réception des marchandises.
  • Pour chaque activité, un inducteur (le driver) sera retenu et suivi (par exemple, le nombre de commandes, les quantités de référence). Cet inducteur sera l'unité qui permettra de répartir le coût total de l'activité. Certains inducteurs ne seront pas utilisés pour éviter des modèles trop lourds. On préférera un inducteur typique de l'activité. Pour chaque activité étudiée, le modèle précisera donc les inducteurs consommés.
  • Ainsi le calcul du coût de revient, en réalisant un tableau de répartition des charges par produit peut-il être réalisé. A noter que les inducteurs ont pour objectif principal de répartir les charges indirectes et que les charges directes sont réparties généralement de manière ordinaire.

La méthode ABC présente l'avantage d'affecter de manière plus précise les coûts aux produits sans procéder à une répartition des coûts indirects à l'aide d'une unité de mesure souvent arbitraire (par exemple, les heures machines). Une meilleure connaissance des processus permet de dégager les forces et faiblesses d'une organisation à la mise en place de cette méthode. L'utilisation de cette méthode gagne en pertinence lorsque les processus de production sont "en ligne" avec un personnel qualifié et polyvalent, que les processus sont flexibles, et que la technique utilisée est celle de la production en série de taille différentes avec utilisation de la méthode du Juste-à-temps.

[modifier] Méthodes de calcul de coût par les caractéristiques

Il existe plusieurs méthodes ayant pour objet de rapprocher les caractéristiques des produits avec le coût de ceux-ci. Selon les principes de mercatique un produit doit pour être le mieux vendu, adopter un positionnement précis de son image de marque sur les segments de clientèle choisis. Ceci implique d'investir un coût plus important vis-à-vis des caractéristiques (attributs ou fonctions) du produit qui ont été détectées comme valorisées par le public.

Ainsi, la méthode des coûts cibles établit un rapport d'importance des fonctions attendues par le client et la marge sur coût variable. Cette technique a pour avantage sa simplicité de calcul.Cette méthode a aussi une capacité à convaincre la force de vente qui est payée en fonction du chiffre d'affaires, ce qui la rapproche du mode de calcul.

Mais il est possible de lier ce rapport avec des coûts qui ne sont pas liés à priori au chiffre d'affaires. L'américain J.A. Brimson propose dans les années 90 le "Feature Costing", publié dans un article en français en 1998 sous le nom de méthode de "Calcul des Coûts par les Caractéristiques" (ou méthode des coûts stables (MCS) aussi connue sous MCCC). Cette méthode analyse aussi le lien entre les caractéristiques des produits et les coûts à chaque activité. L'objectif est de simplifier la prise de décision concernant un portefeuille produit. La comparaison entre les attentes des clients et le coût des produits est facilité. De même, depuis une dizaine d'années, le belge E. Hachez propose la méthode CALADRIS dans cette perspective. Cette méthode propose une approche multicritère pour l'analyse des liens entre les coûts et les caractéristiques des produits en s'approchant au mieux de la réalité économique du processus de l'entreprise. Cette méthode est basée, à chaque activité du processus de l'entreprise et pour chaque type de charge, sur un système de pondération de la difficulté générée par les caractéristiques des produits. Il en résulte une évaluation multicritère précise utilisée en contrôle de gestion (calcul du prix de revient d'un produit réalisé), dans une optique prévisionnelle (préparation des devis, offres et tarifs) ou en management stratégique (analyse de la valeur des caractéristiques des produits).

Ces méthodes comme toutes méthodes multicritères sont pertinentes dans la mesure des pondérations choisies si possible objectivement. Elles peuvent s'adapter aux entreprises avec des produits industriels ou des services sur-mesure ou très diversifiés car les critères peuvent être adaptés.

[modifier] Méthode UVA (unité de valeur ajoutée)

[modifier] Historique et objectifs

Cette méthode perfectionne la méthode des coûts complets et sert d'alternative à la méthode ABC. Elle se fonde aussi sur une analyse minutieuse des activités (sous forme de gammes opératoires), mais surtout sur celle des postes (opération élémentaire de travail constituée d'un ensemble de moyens matériels et humains, qui fonctionnent de façon homogène). Cette méthode diffusée et élargie entre autre par J. Fievez, R. Zaya et J.P. Kieffer est née des travaux de Georges Perrin réalisés au début des années 50 sur le concept de l'unification de la mesure de la production qui aboutit au modèle de la méthode GP rebaptisée UVA en 1995.

La méthode UVA se pose comme objectif premier de calculer le résultat (bénéfice ou perte) de chaque vente (concrètement il peut s'agir d'une facture, d'une commande, d'une livraison ...). La réalisation d'une vente est considérée comme le processus transversal élémentaire dans l'entreprise regroupant tout le travail fait par toutes les fonctions depuis l'enregistrement de la commande, en passant par la production des produits, jusqu'à leur livraison et l'encaissement de la facture. Ainsi, on peut considérer que des activités dites "de support", ou indirectes par rapport aux produits sont directement consommées par chaque vente, ce qui réduit considérablement les imputations arbitraires des charges indirectes. En tant que processus transversal élémentaire, la vente constitue la « brique » de base qui permet de réaliser toute autre analyse de la rentabilité. Cette méthode permet de réaliser un très grand nombre de simulations sans analyse supplémentaire à partir du moment où nous disposons de l'équivalent UVA.

L'UVA est une unité de mesure, qui permet de valoriser les activités, propre à chaque entreprise, c'est le mètre-étalon spécifique auquel seront comparées toutes les consommations de ressources de tous les postes UVA. L'avantage fondamental de l'utilisation de cette unité est qu'elle est indépendante des variations monétaires et permet de gérer de façon simple des entreprises complexes (ayant beaucoup de produits et beaucoup de clients), faire comme si l'entreprise était mono-produit. Le prix de cette précision est le besoin d'une certaine stabilité dans le temps du rapport entre les ressources consommées par les postes de l'entreprise. Par conséquent en cas de changement profond technologique, il faut réactualiser l'analyse des postes touchés par ce changement, mais pas les autres. En conditions normales, il est recommandé de faire une réactualisation tous les 5 ans. Cette analyse des postes doit être très pointue. De plus l'article (le produit) utilisé pour calculer l'UVA doit être représentatif. Comme elle simplifie le recueil et le calcul des données, cette méthode peut être aussi utilisée dans les organisations qui n’ont pas la taille suffisante pour disposer d’un contrôleur de gestion. Ces organisations peuvent aussi bien être des petites entreprises que des unités opérationnelles atypiques de grands groupes.

[modifier] Étapes d'utilisation

  • Établir un tableau pour un article de base (représentatif de l'activité) en croisant les ressources consommées par postes de l'article et celles par gammes de l'entreprise. Il faudra utiliser une unité d'oeuvre homogène par postes. Par cette opération l'entreprise réalise l'analyse de l'activité.
  • Établir un second tableau croisant la consommation de tous les postes et tous les montants de charges. Toute la difficulté est de réduire à néant les frais non imputables. Pour correspondre aux postes, les charges sont imputées par l'utilisation d'unité d'emploi (le terme unité d'oeuvre étant réservé aux postes). Le total par poste du tableau est appelé taux de poste UVA. Par cette opération il s’agit d’identifier les ressources consommées par les différents postes et non pas de répartir les charges de l’entreprise entre les postes.
  • Calculer le taux de base de l'article (valeur d'une UVA) qui est la somme des taux de poste UVA uniquement de l'article multiplié par les unités d'oeuvre par poste. Cette opération permet d'évaluer l'effort de production de l'article.
  • Calculer les indices UVA par poste qui sont la division des taux de postes par le taux de base de l'article. Cette opération permet d'évaluer la part d'un poste sur la valeur de la transaction.
  • Calculer L'équivalent UVA qui est la somme des indices UVA multiplié par les unités d'oeuvre d'un produit de la gamme.
  • Disposant de l'équivalent UVA, il est possible de réaliser de très nombreuses analyses avec le seuil de rentabilité, ou des tableaux de bord au niveau élémentaire ou global en conservant l'objectivité nécessaire.

[modifier] Voir aussi

[modifier] Articles connexes

[modifier] Bibliographie

  • Comptabilité analytique de gestion, Dunod, 2007
  • Comptabilité analytique, économica, 2006
  • Comptabilité analytique et contrôle de gestion, Vuibert, 2005


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -