Virus
De Wikipedia, la enciclopedia libre
Un virus (de la palabra latina virus, toxina o veneno) es una entidad biológica que para replicarse necesita de una célula huésped. Cada partícula de virus o virión es un agente potencialmente patógeno compuesto por una cápside (o cápsida) de proteínas que envuelve al ácido nucléico, que puede ser ADN o ARN. La forma de la cápside puede ser sencilla, típicamente de tipo helicoidal o icosaédrica (poliédrica o casi esférica), o compuesta, típicamente comprendiendo una cabeza y una cola. Esta estructura puede, a su vez, estar rodeada por la envoltura vírica, una capa lipídica con diferentes proteínas, dependiendo del virus.
El ciclo vital de un virus siempre necesita de la maquinaria metabólica de la célula invadida para poder replicar su material genético, produciendo luego muchas copias del virus original. En dicho proceso reside la capacidad destructora de los virus, ya que pueden perjudicar a la célula hasta destruirla. Pueden infectar células eucarióticas (plantas o animales) o procarióticas (en cuyo caso se les llama bacteriófagos, o simplemente fagos). Algunos indicios parecen demostrar que existen virus que infectan a otros virus (llamados viroides). Algunos virus necesitan de enzimas poco usuales por lo que las cargan dentro de su envoltorio como parte de su equipaje.
Los biólogos debaten si los virus son o no organismos vivos. Algunos consideran que no están vivos, puesto que no cumplen los criterios de definición de vida. Por ejemplo, a diferencia de la mayoría de los organismos, los virus no tienen células. Sin embargo, tienen genes y evolucionan por selección natural. Otros biólogos los han descrito como organismos en el borde de la vida.
Las infecciones virales en humanos y animales por lo general dan como resultado una respuesta inmune y a menudo enfermedades. Muchas veces, el virus es completamente eliminado por el sistema inmunológico. Los antibióticos no tienen ningún efecto sobre los virus, pero se han desarrollado medicamentos antivirales para el tratamiento de las infecciones. Las vacunas pueden prevenir las infecciones virales produciendo inmunidad durante tiempo prolongado.
Tabla de contenidos |
Descubrimiento de los virus
Las enfermedades virales como la rabia, fiebre amarilla y viruela han afectado a los seres humanos desde hace mucho siglos. Se conocen jeroglíficos que describen la poliomielitis en la medicina del Antiguo Egipto,[1] aunque en ese momento no se conoce la causa de la enfermedad. En el siglo X, Al-Razi escribe el Tratado sobre la viruela y el sarampión, que ofrece la primera descripción clara de estas enfermedades.[2]
La naturaleza contagiosa de las enfermedades infecciosas (virales y bacterianas) es descrita por Avicena en la década de 1020 en su obra Canon de medicina. En ella describe la tuberculosis y las enfermedades de transmisión sexual y su propagación a través del contacto físico, agua y suelo.[3] Sostiene que las secreciones corporales se contaminan por "organismos extraños" que producen la infección[4] e introduce la práctica de la cuarentena como medio para limitar la propagación de las enfermedades contagiosas.[5] Cuando la Peste Negra (o peste bubónica) llega a Al-Andalus en el siglo XIV, Ibn Khatima descube que las enfermedades infecciosas son causadas por microorganismos que se introducen en el cuerpo humano. Otro médico andaluz del siglo XIV, Ibn al-Khatib (1313-1374), escribe el tratado titulado Sobre la peste, en el que afirma que las enfermedades infecciosas se pueden transmitir a través del contacto corporal y "por prendas de vestir, buques y pendientes."[4] Las causas etiológicas de la tuberculosis, de la peste bubónica y de algunas enfermedades de transmisión sexual más tarde fueron identificadas como bacterias.
Las primeras vacunas para prevenir las enfermedades virales se descubren en el siglo XVIII. En 1717, Mary Montagu, la esposa de un embajador inglés en el Imperio otomano, observa que las mujeres locales tienen la costumbre de inocular a sus hijos con fluidos tomados de casos leves de viruela.[6] A finales del siglo XVIII, Edward Jenner observa y estudia a Miss Sarah Nelmes, una lechera que había sufrido la «viruela de vaca» y que como consecuencia era inmune a la viruela, un virus similar que afecta a las personas. Jenner desarrolla la vacuna contra la viruela sobre la base de estas conclusiones. Después de largas campañas de vacunación, la Organización Mundial de la Salud (OMS) certifica la erradicación de la viruela en 1979.
La primera referencia sobre la existencia de los virus se debe al botánico ruso Dimitri Ivanovski en 1892. Un poco antes, Charles Chamberland desarrolla un filtro de porcelana con poros lo suficientemente pequeños para retener a las bacterias y separarlas de su medio de cultivo.[7] Dimitri Ivanovski usa este filtro para identificar al agente causante de la enfermedad denominada mosaico del tabaco y llega a la conclusión de que debe tratarse de una toxina o de un organismo más pequeño que las bacterias pues atraviesa los filtros que retienen a estas. Al pasar extractos de hojas de plantas de tabaco infectadas a través del filtro y luego utilizar el extracto filtrado para infectar a otras plantas, demuestra que el agente infeccioso no es una bacteria. Experimentos similares son realizados por varios otros investigadores, con resultados similares y muestran que los virus son algunos órdenes de magnitud más pequeños que las bacterias.
El término virus fue acuñado por el microbiólogo holandés Martinus Beijerinck, que utilizando métodos basados en el trabajo de Ivanovski, en 1897 desecha la idea de las toxinas. Comprueba que el agente causante de la enfermedad del mosaico del tabaco es capaz de reproducirse, ya que mantiene su poder infeccioso sin diluirse al pasar de unas plantas a otras y acuña la frase latina "contagium vivum fluidum" (que significa "germen soluble de vida"), la primera aproximación al concepto de virus.[8] Poco después, los microbiólogos alemanes Frederick Loeffler y Paul Frosch descubren que la fiebre aftosa del ganado es también producida por un virus filtrable que actúa como agente infeccioso. El primer virus humano identificado fue el virus de la fiebre amarilla.
A principios del siglo XX, Frederick Twort descubre que también las bacterias pueden ser infectadas por virus.[9] Felix d'Herelle, que trabajaba independientemente, muestra que un preparado de viral origina áreas muertas en cultivos celulares realizados sobre agar. Contando los áreas muertas puede estimar el número original de virus en la suspensión. En la década de los 30, con el uso de filtros de tamaño de poro inferior, con las técnicas de cultivo celular in vitro que permiten la obtención de gran cantidad de estos agentes, con la ultracentrifugación y finalmente con el microscopio electrónico y la difracción de rayos X, se logra por fin visualizar a los virus. En 1935, Wendell Stanley cristaliza el virus del mosaico del tabaco y descubre que está compuesto en su mayor parte de proteínas.[10] Poco tiempo después, el virus fue separado en proteínas y ácidos nucleicos.[11] [12] En 1939, Max Delbrück y EL Ellis demostraron que, en contraste con los organismos celulares, los bacteriófagos se reproducen en "un paso", en lugar de exponencialmente.[13]
Un problema importante para los primeros virólogos fue la incapacidad de cultivar virus en medios de cultivo estériles, tal como se hace con los microorganismos celulares. Esta limitación requiere que los virólogos médicos infecten animales vivos, lo cual es peligroso. El primer avance se produce en 1931, cuando William Ernest Goodpasture demuestra el crecimiento de la gripe y de otros virus en huevos de gallina fertilizados.[14] Sin embargo, algunos virus no crecen en huevos y era necesaria una mayor flexibilidad técnica para la propagación de virus. La solución llegó en 1949 cuando John Franklin Enders, Thomas H. Weller y Frederick Chapman Robbins desarrollan conjuntamente una técnica para reproducir el virus de la polio en cultivos de células vivas de animales.[15] Sus métodos se han extendido y se aplican al crecimiento de virus y de otros agentes infecciosos que no crecen en medios de cultivo estéril.
Características de los virus
Ninguno de los virus posee orgánulos y, sobre todo, ninguno tiene autonomía metabólica, por lo que no son considerados células. Su ciclo de vida tiene dos fases, una extracelular y metabólicamente inerte, y otra intracelular que es reproductiva. Se puede agrupar las características definitorias de los virus en torno a tres cuestiones: su tamaño, el hecho de que sean cristalizables y el hecho de que sean parásitos intracelulares o microcelulares obligados. Estas tres cuestiones colocan a los virus en la frontera entre lo vivo y lo inerte.
Tamaño
Los virus son estructuras extraordinariamente pequeñas. Su tamaño oscila entre los 24 nm del virus de la fiebre aftosa a los 300 nm de los poxvirus. Algunos filovirus tienen una longitud total de hasta 1400 nm, sin embargo, el diámetro de su cápside es de sólo alrededor de 80 nm. La mayoria de los virus no pueden verse con el microscopio óptico, pero algunos son tan grandes o mayores que las bacterias más pequeñas y pueden verse bajo magnificación óptica alta.
Más comúmente, se utilizan microscopios electrónicos tanto de barrido como de transmisión para visualizar las partículas de virus. Para aumentar el contraste entre los virus y el fondo se utilizan tintes de alto contraste a los electrones alta densidad. Se trata de soluciones de sales de metales pesados, como el tungsteno, que dispersan los electrones de las regiones cubiertas por el tinte. Cuando las partículas del virus están recubiertos por el tinte (tinción positiva), los finos detalles son oscurecidos. La tinción negativa resuelve este problema tintando el fondo solamente.[16]
Cristalizables
Los virus son cristalizables, como demostró W. Stanley en 1935. Esto depende del hecho de que las partículas víricas tienen formas geométricas precisas y que son idénticas entre sí, lo cual las separa de la irregularidad característica de los organismos, las células o los orgánulos, y las acerca a las características de los minerales y de agregados de macromoléculas como los ribosomas. Al tener un volumen y forma idénticos, las partículas víricas tienden a ordenarse en una pauta tridimensional regular, periódica, es decir, tienden a cristalizar.
Parásitos intracelulares obligados
Los virus son parásitos intracelulares obligados. Desde los años treinta se sabe que los virus se componen principalmente de ácido nucleico y proteínas, estas últimas forman la cápside, que se conoce también como envoltura proteíca. Esto quiere decir que necesitan un huésped (hospedante), ya que en vida libre no sobreviven. Se sabe que los virus pueden vivir alrededor de unos cuarenta días sin que tengan algún hospedante en el cual reproducirse.
También se han encontrado virus que presentan lípidos, aunque estos son tomados de la célula que infectan. Hasta ahora todos los virus que se conocen presentan un solo tipo de ácido nucleico (ya sea ADN o ARN), el cual puede ser de una o de dos cadenas y puede ser segmentado. Para que el ácido nucleico pueda replicarse, necesita utilizar la maquinaria enzimática y estructural de una célula viva, y por otra parte, solamente dentro de una célula viva tienen los virus las funciones de autoconservación, que junto con la reproducción, caracterizan a los seres vivos. Esta condición es la causa de que muchísimos virus sean conocidos como gérmenes patógenos que producen enfermedades en plantas y animales, e incluso en las bacterias.
Estructura de los virus
Una partícula de virus, conocida como virión, está compuesta de una molécula de ácido nucleico (ADN o ARN) y una envoltura proteínica. Ésta es la estructura básica de un virus, aunque algunos de ellos pueden añadir a esto la presencia de alguna enzima, bien junto al ácido nucleico, como la transcriptasa inversa de los retrovirus, bien en la envoltura, para facilitar la apertura de una brecha en la membrana de la célula hospedadora.
La envoltura proteínica recibe el nombre de cápside. Está formada por unas subunidades idénticas denominadas capsómeros. Los capsómeros son proteínas globulares que en ocasiones tienen una parte glicídica unida. Son codificadas por el genoma viral y su forma sirve de base para la distinción morfológica y antigénica.[17] [18] Se autoensamblan entre sí, por lo general requiriendo la presencia del geneoma del virus, dando a la cubierta una forma geométrica. Sin embargo, los virus complejos codifican proteínas que asisten en la construcción de su cápside.[19] Los capsómeros, a su vez, están compuestos de unidades denominadas protómeros. Las proteínas estructuralmente asociadas con el ácido nucleico se donominan nucleoproteínas mientras que la asociación de las proteínas de la cápside viral con el ácido nucleico se denomina nucleocápside.
Atendiendo la forma de la cápsida, se pueden distinguir los siguientes tipos de virus:
Virus cilíndricos o helicoidales | |
En los virus cilíndricos o helicoidales, los capsómeros, que son de un solo tipo, se ajustan en una estructura helicoidal en torno a un eje central donde se encuentra una hélice simple de ácido nucleico. Esta estructura se traduce en un virión con forma de varilla o filamentoso con una gran diversidad, desde los muy cortos y rígidos, a los muy largos y flexibles.
El material genético, generalmente ARN monocatenario, pero también ADN monocatenario en algunos casos, está rodeado por la hélice de proteínas a la que se une por la interacción entre la carga negativa del ácido nucleico y la positiva de la proteína. En general, la longitud de la cápside helicoidal está relacionada con la longitud del ácido nucleico contenido en ella y el diámetro depende del tamaño y disposición de los protómero. Un ejemplo bien estudiado lo constituye el Virus del mosaico del tabaco. |
|
Virus icosaédricos | |
En los virus icosaédricos, los capsómeros, que suelen ser de varios tipos, se ajustan formando un icosaedro regular (es decir, 20 caras triangulares y 12 vértices), y dejando un hueco central donde se sitúa el ácido nucleico fuertemente apelotonado. Algunos forman poliedros con más caras que el icosaedro, y algunos presentan fibras proteicas que sobresalen de la cápside. El icosaedro es la estructura cuasiesférica más eficiente y robusta que se puede construir a partir del ensamablado de varias piezas. Esta estructura se traduce en una apariencia esférica de los virus cuando se observan al microscopio.
Los capsómeros tienen forma de anillo y se construyen con cinco o seis protómeros. Estos se asocian a través de una unión no-covalente para encerrar el ácido nucleico, aunque por lo general menos íntimamente que las cápsides helicoidales y pueden incluir uno o más protómeros. El número de protómeros necesario para constituir la cápside se denota por el número T,[20] el cual indica que se precisan 60×T proteínas para formar la cápside. En el caso del Virus de la hepatitis B, T=4 y se requieren 240 proteínas para formar la cápside. Otros ejemplos de este tipo de virus lo constituyen los adenovirus, entre los que se encuentran los virus de los resfriados y faringitis. |
|
Virus complejos | |
Los virus complejos, con pequeñas variantes, responden a la siguiente estructura general:
Como ejemplo de este tipo de virus se encuentran la mayor parte de los virus bacteriófagos (que infectan las bacterias). |
Envoltura lipoproteica
Muchos virus, exteriormente a la cápsida, presentan una envoltura de características similares a una membrana plasmática: doble capa fosfolipídica y proteínas, muchas de ellas glicoproteínas que proyectan salientes hacia el exterior llamados espículas. La cápsida de estos virus suelen ser icosaédrica, aunque también los hay con cápsida helicoidal. Se interpreta que la envoltura lipoproteica es un resto de un membrana de la célula infectada donde se ha formado el virus, ya sea de la membrana externa que rodea la célula, o de membranas internas como la membrana nuclear o o la del retículo endoplasmático. Esta membrana es integrada en el virus por las proteínas codificadas por el genoma viral, sin embargo los lípidos y carbohidratos en sí mismos no son codificados, sino que se obtienen de la célula huésped.
La envoltura viral puede dar un virión algunas ventajas, como por ejemplo, la protección contra ciertas enzimas y productos químicos. Puede incluir glicoproteínas que funcionan como moléculas receptoras , permitiendo que las células huéspedes la reconozcan y se unan a estos viriones, dando lugar a la posible absorción del virion por parte de la célula. La mayoría de los virus con evoltura dependen de esta para su infectividad. Un ejemplo de éste tipo de virus lo constituye el de la gripe.
Algunos autores denominan virus complejos a virus con cubierta lipoproteica que presentan además varias moléculas de ácido nucleico en su interior y algunas enzimas, como es el caso del virus de la gripe. Otros como los poxvirus son virus grandes y complejos que tienen una inusual morfología. El genoma viral se asocia con las proteínas dentro de una estructura central de disco denominado nucleoide. El nucleoide está rodeado por una membrana y dos cuerpos laterales de función desconocida. El virus tiene una envoltura exterior con una gruesa capa de proteínas sobre su superficie. La partícula del virus es ligeramente pleomórfica, yendo desde ovoide a forma de ladrillo.[21]
Genoma
Los virus presentan una enorme variedad de estructuras genómicas y como grupo presentan más diversidad genómica estructural que todos los restantes reinos de plantas, animales y bacterias.[22]
Ácido nucleico
El ácido nucleico es solamente de un tipo, ADN o ARN. Pocas veces contienen ambos, por ejemplo, los citomegalovirus son una excepción a esta regla, pues contienen un núcleo de ADN con varios segmentos ARNm.[19] Con bastante diferencia, la mayoría de los virus contienen ARN. Los virus que afectan a las plantas tienden a tener una cadena monocatenaria de ARN, mientras que los bacteriófagos suelen tener ADN bicatenario. Algunas especies de virus presentan nucleótidos anormales, como hodroximetilcitosina en lugar de citosina, como una parte normal de su genoma.[19]
Así podemos distinguir dos tipos de virus:
Tomando en consideración el tipo de cadena del ácido nucleico (doble o sencilla de sentido positivo o negativo) y la forma en que se replica el virus utilizando la célula huésped (retrotranscrito o no), los virus pueden subdividirse todavía más de acuerdo con la Clasificación de Baltimore.
Forma
Los genomas virales pueden ser circulares, como en los poliomavirus, o lineales, como en los adenovirus. El tipo de ácido nucleico es irrelevante para la forma del genoma. Entre los virus ARN, el genoma se suele dividir en varias partes separadas dentro del virión y se denominan segmentados. Los genomas ARN bicatenarios y algunos ARN monocatenarios son segmentados. Cada segmento a menudo codifica una proteína y por lo general se encuentran juntos en una cápside. No se requiere que cada segmento esté en el mismo virión para que el conjunto de virus sea infeccioso, como se demostró con el Virus del mosaico del Bromus.[19]
Cadena simple/doble
Un genoma viral, con independencia del tipo de ácido nucleico, puede ser monocatenario o bicatenario. Algunos virus, tales como los pertenecientes a Hepadnaviridae, contienen un genoma que es parcialmente bicatenario y monocatenario.[22] Los virus que infectan a los seres humanos incluyen ARN bicatenario (p.e. rotavirus), ARN monocatenario (p.e. virus de la gripe), ADN monocatenario (p.e. parvovirus B19) y ADN bicatenario (p.e. virus del herpes).
Sentido
Para los virus con ARN como ácido nucleico, las cadenas pueden ser de sentido positivo (+) o negativo (-), dependiendo de si es o no complementario al ARNm viral. EL ARN viral de sentido positivo es idéntico al ARNm viral y, por tanto, puede traducirse inmediatamente en la célula huésped. El ARN de sentido negativo es complementaria del ARNm y, por tanto, se debe convertir en ARN de sentido positivo por una ARN polimerasa antes de la traducción. Para los virus con ADN la nomenclatura es similar, de forma que las cadenas que codifican el ARNm viral son complementarias a este (-) y las cadenas no codificadoras son una copia de este (+).
Tamaño del genoma
El tamaño del genoma en términos de la masa de nucleótidos varía entre especies. El genoma más pequeño tiene aproximadamente una masa de 106 umas y codifica sólo cuatro proteínas, mientras que el mayor tiene una masa sobre 108 umas y códifica para más de un centenar de proteínas.[19] Los virus ARN tienen por lo general genomas más pequeños que los virus de ADN debido a una mayor tasa de errores cuando se replican, lo que limita en la práctica su tamaño. Más allá de este límite, los errores de replicación hacen el virus inútil o poco competitivo. Para compensar esto, los virus ARN tienen a menudo genomas segmentados (dividido en segmentos), lo que reduce la probabilidad de error de cada molécula.[23] En contraste, los virus ADN suelen tener genomas más grandes debido a la alta fidelidad de las enzimas de replicación.[22]
Tipos de virus
En este apartado consideraremos tres grupos de virus según el tipo de células que infecten, y en cada grupo se citarán los ejemplos más destacados y sus otras características definitorias.
Virus que infectan células animales
El primer virus descrito fue el de la fiebre aftosa (Loeffler y Frosch, finales del siglo XIX). La mayoría de ellos tienen envoltura lipoproteica:
- Entre los virus con ARN monocatenario se pueden citar los de la rabia, el sarampión, la gripe y la rubéola.
- Los retrovirus contienen ARN monocatenario y la enzima transcriptasa inversa. Al infectar la célula, transcriben el ARN en una molécula de ADN bicatenario que se une al ADN celular. Pertenecen a este grupo el virus del SIDA y algunos virus oncogénicos.
- Entre los virus con ADN bicatenario se puede citar el grupo de los herpesvíridos como los del herpes, y de la hepatitis.
Hay también virus de células animales icosaédricos sin envoltura lipoproteica:
- El virus de la polio humana tiene ARN monocatenario.
- La mayor parte de los reovirus (con ARN bicatenario) infectan células animales.
- Los virus que contienen ADN bicatenario suelen ser poco virulentos, como los adenovirus (de los resfriados) y los virus de las verrugas (papovirus).
Virus que infectan bacterias
Fueron descubiertos independientemente en 1915 y 1917 por Frederick Twort, bacteriólogo británico y Felix D'Herelle en Canadá. La mayoría son virus complejos y contienen ADN bicatenario; pertenecen al grupo de los myovíridos. Hay también bacteriófagos que no responden al tipo común, como los corticovíridos, icosaédricos, o los levivíridos, con ARN monocatenario, o los bacteriófagos con envoltura lipoproteica.
Virus que infectan células vegetales
Son los primeros que se descubrieron (virus del mosaico del tabaco, Ivanovski, 1892). La mayor parte de ellos contienen ARN monocatenario y cápsida helicoidal, y carecen de envoltura lipoproteica. El virus del mosaico del tabaco es un ejemplo. Algunos reovirus (virus con RNA bicatenario, icosaédricos y sin envoltura lipoproteica) producen tumores en las heridas de las plantas. En este grupo hay también virus con ADN y cápsida icosaédrica, como el del estriado del maíz o el del mosaico de la coliflor.
Clasificación de los virus
Los virus se han venido clasificando atendiendo al tipo de ácido nucleico que contienen, a las características de la envoltura del virión, cuando existe, a la posición taxonómica de sus huéspedes, a la patología que producen, etc. Combinando caracteres como los enumerados, y por ese orden de importancia, se han reconocido unos 30 grupos de virus internamente bien definidos.
Taxonómicamente, debido a la ausencia de registro fósil, a su falta de autonomía para el desarrollo y a su probable carácter polifilético, es muy difícil aplicarles de forma consistente los criterios de clasificación y nomenclatura que sirven tan bien para la clasificación de los organismos celulares, o verdaderos organismos.[24] [25] Los virus no encajan fácilmente en cualquiera de los ámbitos de la clasificación biológica, y la clasificación comienza en el rango de familia u orden. No todas las familias son actualmente clasificadas en órdenes, ni todos los géneros son clasificados en familias. Sin embargo, se ha sugerido el nombre de dominio Acytota (sin células), lo que pondría a los virus a la par con los dominios de Bacteria, Archaea y Eukarya.
El esfuerzo por alcanzar una necesaria clasificación natural, ha producido distintos resultados, de los que consideramos aquí dos, la clasificación de Baltimore y la del International Committee for Taxonomy of Viruses (ICTV).
Clasificación de Baltimore
La clasificación de Baltimore[26] [27] distribuye los virus en siete grupos fundamentales en función de la base química del genoma y en el mecanismo de producción de ARNm. Todos los virus deben generar cadenas positivas de ARN a partir de sus genomas para producir proteínas y replicarse a sí mismos, pero se utilizan distintos mecanismos en cada uno de los siete grupos:
- Grupo I: Virus ADN bicatenario (o Virus dsDNA).
- Los virus de ADN de dos cadenas entran en la célula (independientemente del mecanismo de infección) y las ARN polimerasas no distinguen el genoma celular del genoma vírico, forman ARNm, que se traduce en los ribosomas y da lugar a las proteínas de la cápsida, y a veces a enzimas replicativos. Son los virus más simples. Ej: los fagos de la serie T par, fueron los primeros que se descubrieron.
- Grupo II: Virus ADN monocatenario (o Virus ssDNA).
- Su material genético es ADN de una cadena de carácter positivo. Ya que es de polaridad positiva, necesita una cadena negativa para poder transcribir; así, al entrar a la célula la ADN polimerasa (enzima de reparación o alargamiento) hace un ADN bicatenario que sirve para sintetizar (a partir de la hebra negativa) un ARNm que lleva la información necesaria para fabricar capsómeros y enzimas replicativos.
- Grupo III: Virus ARN bicatenario (o Virus dsRNA).
- Son virus de ARN bicatenario. Llevan como parte del virión una transcriptasa viral que es una ARN polimerasa ARN dependiente que utiliza para, a partir de la hebra negativa del ARN bicatenario, fabricar el ARNm. Además de ser una enzima es una proteína estructural, ya que forma parte de la cápsida, por ello sólo se replica si a la célula entra la cápsida junto al genoma vírico.
- Grupo IV: Virus ARN monocatenario positivo (o Virus (+)ssRNA).
- Son virus de ARN monocatenario cuyo genoma tiene naturaleza de ARNm. Son virus simples.
- Grupo V: Virus ARN monocatenario negativo (o Virus (-)ssRNA).
- Son virus de ARN monocatenario con polaridad de antimensajero. Poseen una ARN polimerasa dependiente de ARN de una cadena. Así, dentro de la célula infectada forman el ARN complementario a su genoma y que actúa de ARNm.
- Grupo VI: Virus ARN monocatenario retrotranscrito (o Virus ssRNA-RT).
- Son virus de ARN cuyo genoma podría actuar como mensajero pero “in vivo” no lo hace. Poseen una transcriptasa inversa que de un genoma ARN transcribe una molécula de ADN, primero de una cadena y luego de dos. Posteriormente y usando los enzimas celulares se elabora un mensajero. Estos virus son capaces de alcanzar el núcleo de las células, se insertan a los cromosomas de las células que infectan, son los retrovirus.
- Grupo VII: Virus ADN bicatenario retrotranscrito (o Virus dsDNA-RT).
- Es el grupo más recientemente descubierto y descrito. Tiene un genoma de ADN bicateario, que se expresa formando un mensajero, que se traduce como el grupo I. No obstante, en el momento de la encapsidación, es el mensajero el que se encapsida. Éste, por retrotranscripción a partir de una Transcriptasa inversa, en el inerior del virión, forma de nuevo una molécula de ADN, primero mono y después dicatenaria, que se convierte en el genoma del virus. Son ejemplos claros de estas rarezas, las familias Herpesviridae y Caulimoviridae.
Clasificación del ICTV
El ICTV (International Committee on Taxonomy of Viruses) intenta conseguir una clasificación universal que pueda funcionar como el necesario estándar de clasificación de los virus, regulando la descripción formal de las nuevas cepas y ordenando su ubicación dentro del esquema clasificatorio.[28] Intenta que las reglas de nomenclatura y clasificación se asemejen lo más posible al estándar tradicional de la clasificación de los organismos utilizando algunas de sus categorías, sufijos que indican el rango taxonómico y aplicando cursiva a los nombres de los taxones:
Los nombres de los taxones de categoría superior se escriben en cursiva, como en el Código Internacional de Nomenclatura Botánica (pero no en el Zoológico). Los nombres de especie siguen una regla sistemática, nombrándose en la lengua vernácula con el nombre de la enfermedad y la palabra que significa virus. Por ejemplo, Virus de la inmunodeficiencia humana. El reconocimiento de órdenes se ha producido tardíamente y se usan con parsimonia, habiéndose designado hasta ahora sólo tres, de manera que la mayoría de las 80 familias todavía no han sido adscritas a ninguno. La lista de ICTV contiene unas 4.000 especies.[29] [30]
Ciclo reproductivo de los virus
Los virus tienen un objetivo básico: producir copias de sí mismos en gran cantidad sirviéndose de la maquinaria que tiene una célula viva para los procesos de replicación, transcripción y traducción.
Origen de los virus
La posición de los virus como frontera entre lo vivo y lo inerte plantea a los científicos el problema de su origen. El origen de los virus modernos no está del todo clara. Puede ser que un único mecanismo puede responder de su origen.[31] Como no fosilizan, las técnicas moleculares son los métodos más útilizados para hipotizar su origen.[32] [19] Dos principales hipótesis existen en la actualidad:
- Los virus serían los primeros seres, en la historia de la evolución de lo inerte a lo vivo, que lograrían reunir con eficacia las funciones de replicación, transcripción y traducción. Serían, pues, los organismos menos evolucionados.[33]
- El hecho de que los virus solamente puedan realizar esas tres funciones vitales en el interior de células vivas, les lleva a pensar que los virus no pudieron existir antes de que aparecieran las primeras células, por muy simples que éstas fueran.
Los virus con sólo unos pocos genes podrían ser partes de ácido nucleico procedentes del genoma de un organismo vivo. Su material genético podría haberse derivado de elementos genéticos transferibles, tales como plásmidos o transposones, que pueden entrar y salir de los genomas.[34] Nuevos virus podrían surgen en cualquier momento, y por tanto, no siempre es el caso que los virus tengan antepasados.
Los virus con genomas más grandes, como los poxvirus, pueden haber sido una vez pequeñas células que parasitaron células más grandes. Con el tiempo, los genes no requeridos para su estilo de vida parasitaria pudieron perderse en un proceso de simplificación conocido como evolución retrógrada. Las bacterias Rickettsia y Chlamydia son células vivas que, al igual que los virus, sólo se puede reproducir dentro de una célula huésped. Estos ejemplos prestan credibilidad a la hipótesis de la simplificación, ya que su estilo de vida parasitaria es probable que haya dado lugar a la pérdida de los genes que en el pasado les había permitido sobrevivir fuera de una célula huésped.
El descubrimiento de otras formas acelulares ha aportado nuevas luces al origen de los virus, pero no ha servido para solucionar la disyuntiva planteada. Las otras formas acelulares son:
Algunos científicos (como Temin, en 1969) han postulado que los virus serían el resultado de la evolución de estas formas acelulares: los virus de ADN procederían de provirus y plásmidos, y los de ARN, de los viroides. La cápsida de los virus sería un logro evolutivo por el que el material genético se vería protegido en su desplazamiento de una célula otra, y garantizaría el éxito de la infección. Por otra parte, las formas acelulares podrían haber nacido en el seno del medio celular, cuando unos determinados genes lograran autonomía respecto al funcionamiento del genoma celular; de esta manera, el origen de los virus no estaría ligado necesariamente a los episodios que acompañan a la aparición de la vida sobre la tierra.
Pero también podría hablarse de un proceso inverso: una pérdida de la cápsida reduciría a las unidades autónomas de replicación-transcripción-traducción a la condición de provirus, plásmidos o viroides.
En conclusión, el descubrimiento de formas acelulares más sencillas que los virus nos ayuda a comprender mejor su naturaleza y significado biológico, pero nos mantiene en la duda de si estamos frente a los primeros organismos salidos de la materia inerte, o frente a formas regresivas resultantes de la especialización del parasitismo.
Ejemplos de virus
Véase Anexo:Tipos de virus.
Referencias
- ↑ Paul GF. (1971) A History of Poliomyelitis. Yale University Press: New Haven and London.
- ↑ Abdul Nasser Kaadan (2007), Al-Razi on Smallpox and Measles, FSTC
- ↑ George Sarton, Introduction to the History of Science (cf. Dr. A. Zahoor and Dr. Z. Haq (1997), Quotations From Famous Historians of Science, Cyberistan.
- ↑ a b Ibrahim B. Syed, Ph.D. (2002). "Islamic Medicine: 1000 years ahead of its times", Journal of the Islamic Medical Association 2, p. 2-9.
- ↑ David W. Tschanz, MSPH, PhD (August 2003). "Arab Roots of European Medicine", Heart Views 4 (2).
- ↑ Behbehani AM (1983). "The smallpox story: life and death of an old disease". Microbiol Rev 47 (4): 455-509.
- ↑ Horzinek MC (1997). "The birth of virology". Antonie van Leeuwenhoek 71: 15–20. DOI:10.1023/A:1000197505492.
- ↑ Chung, King-Thom and Ferris, Deam Hunter (1996). PDF Martinus Willem Beijerinck (1851-1931), pioneer of general microbiology. AMS News 62, 539-543.
- ↑ Frederick William Twort.
- ↑ Stanley WM, Loring HS (1936). "THE ISOLATION OF CRYSTALLINE TOBACCO MOSAIC VIRUS PROTEIN FROM DISEASED TOMATO PLANTS" 83 (2143): 85. DOI:10.1126/science.83.2143.85.
- ↑ Stanley WM, Lauffer MA (1939). "DISINTEGRATION OF TOBACCO MOSAIC VIRUS IN UREA SOLUTIONS" 89 (2311): 345–347. DOI:10.1126/science.89.2311.345.
- ↑ Tsugita A, Gish DT, Young J, Fraenkel-Conrat H, Knight CA, Stanley WM (1960). "THE COMPLETE AMINO ACID SEQUENCE OF THE PROTEIN OF TOBACCO MOSAIC VIRUS". Proc. Natl. Acad. Sci. U.S.A. 46 (11): 1463–9. DOI:10.1073/pnas.46.11.1463.
- ↑ Pennazio S (2006). "The origin of phage virology". Riv. Biol. 99 (1): 103–29.
- ↑ Goodpasture EW, Woodruff AM, Buddingh GJ (1931). "THE CULTIVATION OF VACCINE AND OTHER VIRUSES IN THE CHORIOALLANTOIC MEMBRANE OF CHICK EMBRYOS" 74 (1919): 371–372. DOI:10.1126/science.74.1919.371.
- ↑ Rosen FS (2004). "Isolation of poliovirus--John Enders and the Nobel Prize". N. Engl. J. Med. 351 (15): 1481–3. DOI:10.1056/NEJMp048202.
- ↑ Kiselev NA, Sherman MB, Tsuprun VL (1990). "Negative staining of proteins". Electron Microsc. Rev. 3 (1): 43–72.
- ↑ CASPAR DL, KLUG A (1962). "Physical principles in the construction of regular viruses". Cold Spring Harb. Symp. Quant. Biol. 27: 1–24.
- ↑ CRICK FH, WATSON JD (1956). "Structure of small viruses". Nature 177 (4506): 473–5. DOI:10.1038/177473a0.
- ↑ a b c d e f Prescott, L (1993). Microbiology. Wm. C. Brown Publishers. 0-697-01372-3.
- ↑ Virus triangulation numbers via Internet Archive. Consultado el 2006-04-05.
- ↑ Long GW, Nobel J, Murphy FA, Herrmann KL, and Lourie B (1970) Experience with electron microscopy in the differential diagnosis of smallpox. Applied Microbiology 20(3):497-504.
- ↑ a b c Flinth, et al. (2004). Principles of Virology, 2nd edn, ASM Press, New York. 1-55581-259-7.
- ↑ Pressing J, Reanney DC. Divided genomes and intrinsic noise.J Mol Evol. 1984;20(2):135-46.
- ↑ Rybicki EP (1990) The classification of organisms at the edge of life, or problems with virus systematics. S Aft J Sci 86:182-186
- ↑ LWOFF A (1957). "The concept of virus". J. Gen. Microbiol. 17 (2): 239–53.
- ↑ Baltimore D (1974). "The strategy of RNA viruses". Harvey Lect. 70 Series: 57–74.
- ↑ Temin HM, Baltimore D (1972). "RNA-directed DNA synthesis and RNA tumor viruses". Adv. Virus Res. 17: 129–86.
- ↑ van Regenmortel MH, Mahy BW (2004). "Emerging issues in virus taxonomy". Emerging Infect. Dis. 10 (1): 8–13.
- ↑ Virus Taxonomy 8th Reports of the International Committee on Taxonomy of Viruses C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, and L.A. Ball (eds) Academic Press, 1162 pp. (2005) Elsevier Publication Date: 27 May 2005
- ↑ "ICTVdb Index of Viruses: Virus Taxonomy, 8th Reports of the International Committee on Taxonomy of Viruses: Listing in Taxonomic Order." (Website). U.S. National Center for Biotechnology Information, National Library for Medicine, National Institutes of Health. Consultado el 28-09-2007.
- ↑ Holmes EC, Drummond AJ. The evolutionary genetics of viral emergence.Curr Top Microbiol Immunol. 2007;315:51-66.
- ↑ Liu Y, Nickle DC, Shriner D, Jensen MA, Learn GH Jr, Mittler JE, Mullins JI. Molecular clock-like evolution of human immunodeficiency virus type 1.Virology. 2004 Nov 10;329(1):101-8.
- ↑ Koonin EV. The Biological Big Bang model for the major transitions in evolution.Biol Direct. 2007 Aug 20;2:21.
- ↑ Keese P, Gibbs A. Plant viruses: master explorers of evolutionary space.Curr Opin Genet Dev. 1993 Dec;3(6):873-7.
Véase también
- Bacteria, plásmido, prión, provirus, viroide, nanobio.
- Ciclo reproductivo de los virus.
- Virus y cáncer.
- Virus satélite
- Virus informático.
Enlaces externos
- Wikiespecies tiene un artículo sobre Virus.
- Wikcionario tiene una entrada sobre virus.
- Wikimedia Commons alberga contenido multimedia sobre Virus.