ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Pullback (category theory) - Wikipedia, the free encyclopedia

Pullback (category theory)

From Wikipedia, the free encyclopedia

In category theory, a branch of mathematics, a pullback (also called a fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms f : XZ and g : YZ with a common codomain. The pullback is often written

 P = X \times_Z Y .

Contents

[edit] Universal property

Explicitly, the pullback of the morphisms f and g consists of an object P and two morphisms p1 : PX and p2 : PY for which the diagram

Image:CategoricalPullback-03.png

commutes. Moreover, the pullback (P, p1, p2) must be universal with respect to this diagram. That is, for any other such triple (Q, q1, q2) there must exist a unique u : QP making the following diagram commute:

Image:CategoricalPullback-02.png

As with all universal constructions, the pullback, if it exists, is unique up to a unique isomorphism.

[edit] Weak pullbacks

A weak pullback of a cospan XZY is a cone over it that is only weakly universal, that is, the mediating morphism u:QP above need not be unique.

[edit] Examples

In the category of sets the pullback of f and g is the set:

X\times_Z Y = \{(x, y) \in X \times Y| f(x) = g(y)\},

together with the restrictions of the projection maps π1 and π2 to X ×Z Y .

  • This example motivates another way of characterizing the pullback: as the equalizer of the morphisms f o p1, g o p2 : X × YZ where X × Y is the binary product of X and Y and p1 and p2 are the natural projections. This shows that pullbacks exist in any category with binary products and equalizers. In fact, by the existence theorem for limits, all finite limits exist in a category with a terminal object, binary products and equalizers.

Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : EB and a continuous map f : XB, the pullback X ×B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.

In any category with a terminal object Z, the pullback X ×Z Y is just the ordinary product X × Y.

[edit] Properties

  • Whenever X×ZY exists, then so does Y×ZX and there is an isomorphism X×ZY  \cong Y×ZX.
  • Monomorphisms are stable under pullback: if the arrow f above is monic, then so is the arrow p2. For example, in the category of sets, if X is a subset of Z, then, for any g:YZ, the pullback X×ZY is the inverse image of X under g.
  • Isomorphisms are also stable, and hence, for example, X×XY  \congY for any map YX.

[edit] See also

[edit] References

Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -