ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Pseudo-monotone operator - Wikipedia, the free encyclopedia

Pseudo-monotone operator

From Wikipedia, the free encyclopedia

In mathematics, a pseudo-monotone operator from a reflexive Banach space into its continuous dual space is one that is, in some sense, almost as well-behaved as a monotone operator. Many problems in the calculus of variations can be expressed using operators that are pseudo-monotone, and pseudo-monotonicity in turn implies the existence of solutions to these problems.

[edit] Definition

Let (X, || ||) be a reflexive Banach space. A linear map T : X → X from X into its continuous dual space X is said to be pseudo-monotone if T is a bounded linear operator and if whenever

u_{j} \rightharpoonup u \mbox{ in } X \mbox{ as } j \to \infty

(i.e. uj converges weakly to u) and

\limsup_{j \to \infty} \langle T(u_{j}), u_{j} - u \rangle \leq 0,

it follows that, for all v ∈ X,

\liminf_{j \to \infty} \langle T(u_{j}), u_{j} - v \rangle \geq \langle T(u), u - v \rangle.

[edit] Properties of pseudo-monotone operators

Using a very similar proof to that of the Browder-Minty theorem, one can show the following:

Let (X, || ||) be a real, reflexive Banach space and suppose that T : X → X is continuous, coercive and pseudo-monotone. Then, for each continuous linear functional g ∈ X, there exists a solution u ∈ X of the equation T(u) = g.

[edit] References

  • Renardy, Michael and Rogers, Robert C. (2004). An introduction to partial differential equations, Second edition, Texts in Applied Mathematics 13, New York: Springer-Verlag, 367. ISBN 0-387-00444-0.  (Definition 9.56, Theorem 9.57)


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -