ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Prüfer group - Wikipedia, the free encyclopedia

Prüfer group

From Wikipedia, the free encyclopedia

The Prüfer 2-group. <gn: gn+12 = gn, g12 = e>
The Prüfer 2-group. <gn: gn+12 = gn, g12 = e>

In mathematics, specifically group theory, the Prüfer p-group or the p-quasicyclic group or p-group, Z(p), for a prime number p is the unique torsion group in which every element has p pth roots.

  • The Prüfer p-group may be represented as a subgroup of the circle group, U(1), as the set of pnth roots of unity as n ranges over all non-negative integers:
\mathbf{Z}(p^\infty)=\{\exp(2\pi i n/p^m) \mid n\in \mathbf{Z}^+,\,m\in \mathbf{Z}^+\}\;
  • Alternatively, the Prüfer p-group may be seen as the Sylow p-subgroup of Q/Z, consisting of those elements whose order is a power of p:
\mathbf{Z}(p^\infty) = \mathbf{Z}[1/p]/\mathbf{Z}
\mathbf{Z}(p^\infty) = \langle x_1 , x_2 , ... | p x_1 = 0, p x_2 = x_1 , p x_3 = x_2 , ...\rangle.
  • The Prüfer p-group is the unique infinite p-group which is locally cyclic (every finite set of elements generates a cyclic group).
0 \subset \mathbf{Z}/p \subset \mathbf{Z}/p^2 \subset \mathbf{Z}/p^3 \subset \cdots \subset \mathbf{Z}(p^\infty)
This sequence of inclusions expresses the Prüfer p-group as the direct limit of its finite subgroups.
  • As a \mathbf{Z}-module, the Prüfer p-group is Artinian, but not Noetherian, and likewise as a group, it is Artinian but not Noetherian.[2] It can thus be used as a counterexample against the idea that every Artinian module is Noetherian (whereas every Artinian ring is Noetherian).

[edit] See also

[edit] References

  1. ^ D. L. Armacost and W. L. Armacost, "On p-thetic groups", Pacific J. Math., 41, no. 2 (1972), 295–301
  2. ^ Subgroups of an abelian group are abelian, and coincide with submodules as a \mathbf{Z}-module.
This algebra-related article is a stub. You can help Wikipedia by expanding it.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -