ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Mean and predicted response - Wikipedia, the free encyclopedia

Mean and predicted response

From Wikipedia, the free encyclopedia

In linear regression mean response and predicted response are values of the dependent variable calculated from the regression parameters and a given value of the independent variable. The values of these two responses are the same, but their calculated variances are different.

Contents

[edit] Straight line regression

In straight line fitting the model is

y_i=\alpha+\beta x_i +\epsilon_i\,

where yi is a dependent variable, xi is an independent variable and α and β are parameters. The predicted response value for a given value, xd, of the independent variable is given by

\hat{y}_d=\hat\alpha+\hat\beta x_d ,

while the actual response would be

y_d=\alpha+\beta x_d +\epsilon_d  \,

Expressions for the values and variances of \hat\alpha and \hat\beta are given in linear regression.

Mean response is an estimate of the mean of the y population associated with xd, that is E(y | x_d)=\hat{y}_d\!. The variance of the mean response is given by

\text{Var}\left(\hat{\alpha} + \hat{\beta}x_d\right) = \text{Var}\left(\hat{\alpha}\right) + \left(\text{Var} \hat{\beta}\right)x_d^2 + 2 x_d\text{Cov}\left(\hat{\alpha},\hat{\beta}\right) .

This expression can be simplified to

\text{Var}\left(\hat{\alpha} + \hat{\beta}x_d\right) =\sigma^2\left(\frac{1}{m} + \frac{\left(x_d - \bar{x}\right)^2}{\sum (x_i - \bar{x})^2}\right).

To demonstrate this simplification, one can make use of the identity

\sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{1}{m}\left(\sum x_i\right)^2 .

Predicted response is the expected range of values of y at some confidence level. The predicted response distribution is the predicted distribution of the residuals at the given point xd. So the variance is given by

\text{Var}\left(y_d - \left[\hat{\alpha} + \hat{\beta}x_d\right]\right) = \text{Var}\left(y_d\right) + \text{Var}\left(\hat{\alpha} + \hat{\beta}x_d\right) .

The second part of this expression was already calculated for the mean response. Since \text{Var}\left(y_d\right)=\sigma^2, the variance of the predicted response is given by

\text{Var}\left(y_d - \left[\hat{\alpha} + \hat{\beta}x_d\right]\right) = \sigma^2 + \sigma^2\left(\frac{1}{m} + \frac{\left(x_d - \bar{x}\right)^2}{\sum (x_i - \bar{x})^2}\right) = \sigma^2\left(1+\frac{1}{m} + \frac{\left(x_d - \bar{x}\right)^2}{\sum (x_i - \bar{x})^2}\right) .

[edit] Confidence intervals

The 100(1 − α)% confidence intervals are computed as  y_d  \pm t_{\frac{\alpha }{2},m - n - 1} \sqrt{\text {Var}} . Thus, the confidence interval for predicted response is wider than the interval for mean response. This is expected intuitively – the variance population of y values does not shrink when one samples from it, but the variance mean of the y does shrink with increased sampling. This is analogous to the difference between the variance of a population and the variance of the mean of a population.

[edit] General linear regression

The general linear model can be written as

y_i=\sum_{j=1}^{j=n}X_{ij}\beta_j + \epsilon_i\,

Therefore since y_d=\sum_{j=1}^{j=n} X_{dj}\hat\beta_j the general expression for the variance of the mean response is

\text{Var}\left(\sum_{j=1}^{j=n} X_{dj}\hat\beta_j\right)= \sum_{i=1}^{i=n}\sum_{j=1}^{j=n}X_{di}M_{ij}X_{dj},

where M is the covariance matrix of the parameters, given by

\mathbf{M}=\sigma^2\left(\mathbf{X^TX}\right)^{-1}.


[edit] References

Draper, N.R., Smith, H. (1998) Applied Regression Analysis. Wiley. ISBN 0-471-17082-8


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -