ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Kernel (linear operator) - Wikipedia, the free encyclopedia

Kernel (linear operator)

From Wikipedia, the free encyclopedia

Main article: Kernel (mathematics)

In linear algebra and functional analysis, the kernel of a linear operator L is the set of all operands v for which L(v) = 0. That is, if LV → W, then

\ker(L) = \left\{ v\in V : L(v)=0 \right\}\text{,}

where 0 denotes the null vector in W. The kernel of L is a linear subspace of the domain V.

The kernel of a linear operator Rm → Rn is the same as the null space of the corresponding n × m matrix. Sometimes the kernel of a general linear operator is referred to as the null space of the operator.

Contents

[edit] Examples

  1. If LRm → Rn, then the kernel of L is the solution set to a homogeneous system of linear equations. For example, if L is the operator:
    L(x_1,x_2,x_3) = (2x_1 + 5x_2 - 3x_3,\; 4x_1 + 2x_2 + 7x_3)
    then the kernel of L is the set of solutions to the equations
    \begin{alignat}{7}
 2x_1 &&\; + \;&& 5x_2 &&\; - \;&& 3x_3 &&\; = \;&& 0 \\
 4x_1 &&\; + \;&& 2x_2 &&\; + \;&& 7x_3 &&\; = \;&& 0
\end{alignat}\text{.}
  2. Let C[0,1] denote the vector space of all continuous real-valued functions on the interval [0,1], and define LC[0,1] → R by the rule
    L(f) = f(0.3)\text{.}\,
    Then the kernel of L consists of all functions f ∈ C[0,1] for which f(0.3) = 0.
  3. Let C(R) be the vector space of all infinitely differentiable functions R → R, and let DC(R) → C(R) be the differentiation operator:
    D(f) = \frac{df}{dx}\text{.}
    Then the kernel of D consists of all functions in C(R) whose derivatives are zero, i.e. the set of all constant functions.
  4. Let R be the direct sum of infinitely many copies of R, and let sR → R be the shift operator
    s(x_1,x_2,x_3,x_4,\ldots) = (x_2,x_3,x_4,\ldots)\text{.}
    Then the kernel of s is the one-dimensional subspace consisting of all vectors (x1, 0, 0, ...). Note that s is onto, despite having nontrivial kernel.
  5. If V is an inner product space and W is a subspace, the kernel of the orthogonal projection V → W is the orthogonal complement to W in V.

[edit] Properties

If LV → W, then two elements of V have the same image in W if and only if their difference lies in the kernel of L:

L(v) = L(w)\;\;\;\;\Leftrightarrow\;\;\;\;L(v-w)=0\text{.}

It follows that the image of L is isomorphic to the quotient of V by the kernel:

\text{im}(L) \cong V / \ker(L)\text{.}

When V is finite dimensional, this implies the rank-nullity theorem:

\dim(\ker L) + \dim(\text{im}\,L) = \dim(V)\text{.}\,

When V is an inner product space, the quotient V / ker(L) can be identified with the orthogonal complement in V of ker(L). This is is the generalization to linear operators of the row space of a matrix.

[edit] Kernels in functional analysis

If V and W are topological vector spaces (and W is finite-dimensional) then a linear operator LV → W is continuous if and only if the kernel of L is a closed subspace of V.

[edit] See also


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -