ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Infinite arithmetic series - Wikipedia, the free encyclopedia

Infinite arithmetic series

From Wikipedia, the free encyclopedia

In mathematics, an infinite arithmetic series is an infinite series whose terms are in an arithmetic progression. Examples are 1 + 1 + 1 + 1 + · · · and 1 + 2 + 3 + 4 + · · ·. The general form for an infinite arithmetic series is

\sum_{n=0}^\infty(an+b).

If a = b = 0, then the sum of the series is 0. If either a or b is nonzero, then the series diverges and has no sum in the usual sense.

[edit] Zeta regularization

The zeta-regularized sum of an arithmetic series of the right form is a value of the associated Hurwitz zeta function,

\sum_{n=0}^\infty(n+\beta) = \zeta_H (-1; \beta).

Although zeta regularization sums 1 + 1 + 1 + 1 + · · · to ζR(0) = −12 and 1 + 2 + 3 + 4 + · · · to ζR(−1) = −112, where ζ is the Riemann zeta function, the above form is not in general equal to

-\frac{1}{12} - \frac{\beta}{2}.

[edit] References

  • Brevik, I. and H. B. Nielsen (February 1990). "Casimir energy for a piecewise uniform string". Physical Review D 41 (4): 1185–1192. doi:10.1103/PhysRevD.41.1185. 
  • Elizalde, E. (May 1994). "Zeta-function regularization is uniquely defined and well". Journal of Physics A: Mathematical and General 27 (9): L299–L304. doi:10.1088/0305-4470/27/9/010.  (arXiv preprint)
  • Li, Xinzhou; Xin Shi; and Jianzu Zhang (July 1991). "Generalized Riemann ζ-function regularization and Casimir energy for a piecewise uniform string". Physical Review D 44 (2): 560–562. doi:10.1103/PhysRevD.44.560. 
This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -