ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Hall–Janko group - Wikipedia, the free encyclopedia

Hall–Janko group

From Wikipedia, the free encyclopedia

Groups
Group theory
This box: view  talk  edit

In mathematics the Hall-Janko group HJ, of order 604800, is also called the second Janko group J2, or the Hall-Janko-Wales group, since it was predicted by Janko and constructed by Hall and Wales. It is a subgroup of index two of the group of automorphisms of the Hall-Janko graph, leading to a permutation representation of degree 100.

We may also express it in terms of a modular representation of dimension six over the field of four elements; if in characteristic two we have w2 + w + 1 = 0, then J2 is generated by the two matrices


{\mathbf A} = \left ( \begin{matrix}
w^2 & w^2 & 0 & 0 & 0 & 0 \\ 
1 & w^2 & 0 & 0 & 0 & 0 \\ 
1 & 1 & w^2 & w^2 & 0 & 0 \\ 
w & 1 & 1 & w^2 & 0 & 0 \\ 
0 & w^2 & w^2 & w^2 & 0 & w \\ 
w^2 & 1 & w^2 & 0 & w^2 & 0 \end{matrix} \right )

and


{\mathbf B} = \left ( \begin{matrix}
w & 1 & w^2 & 1 & w^2 & w^2 \\ 
w & 1 & w & 1 & 1 & w \\ 
w & w & w^2 & w^2 & 1 & 0 \\ 
0 & 0 & 0 & 0 & 1 & 1 \\ 
w^2 & 1 & w^2 & w^2 & w & w^2 \\ 
w^2 & 1 & w^2 & w & w^2 & w \end{matrix} \right )

These matrices satisfy the equations


{\mathbf A}^2 = {\mathbf B}^3 = ({\mathbf A}{\mathbf B})^7 = 
({\mathbf A}{\mathbf B}{\mathbf A}{\mathbf B}{\mathbf B})^{12} = 1.

J2 is thus a Hurwitz group, a finite homomorphic image of the (2,3,7) triangle group.

J2 is the only one of the 4 Janko groups that is a section of the Monster group; it is thus part of what Robert Griess calls the Happy Family. It is also found in the Conway group Co1, and is therefore part of the second generation of the Happy Family.

Griess relates [p. 123] how Marshall Hall, as editor of The Journal of Algebra, received a very short paper entitled "A simple group of order 604801." Yes, 604801 is prime.

J2 has 9 conjugacy classes of maximal subgroups. Some are here described in terms of action on the Hall-Janko graph.

  • U3(3) order 6048 - one-point stabilizer, with orbits of 36 and 63
Simple, containing 36 simple subgroups of order 168 and 63 involutions, all conjugate, each moving 80 points. A given involution is found in 12 168-subgroups, thus fixes them under conjugacy. Its centralizer has structure 4.S4, which contains 6 additional involutions.
  • 3.PGL(2,9) order 2160 - has a subquotient A6
  • 21+4:A5 order 1920 - centralizer of involution moving 80 points
  • 22+4:(3 × S3) order 1152
  • A4 × A5 order 720
Containing 22 × A5 (order 240), centralizer of 3 involutions each moving 100 points
  • A5 × D10 order 600
  • PGL(2,7) order 336
  • 52:D12 order 300
  • A5 order 60

Janko predicted both J2 and J3 as simple groups having 21+4:A5 as a centralizer of an involution.

[edit] References

  • Robert L. Griess, Jr, "Twelve Sporadic Groups", Springer-Verlag, 1998.
  • Marshall Hall, Jr. and David Wales, "The Simple Group of Order 604,800", Journal of Algebra, 9 (1968), 417-450.
  • Z. Janko, Some new finite simple groups of finite order, 1969 Symposia Mathematica (INDAM, Rome, 1967/68), Vol. 1 pp. 25-64 Academic Press, London MR0244371
  • Atlas of Finite Group Representations: J2


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -