ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Global dimension - Wikipedia, the free encyclopedia

Global dimension

From Wikipedia, the free encyclopedia

In ring theory and homological algebra, the global dimension (or global homological dimension; sometimes just called homological dimension) of a ring A denoted gl dim A, is a non-negative integer or infinity which is a homological invariant of the ring. It is defined to be the supremum of the set of projective dimensions of all A-modules. Global dimension is an important technical notion in the dimension theory of Noetherian rings. By a theorem of Jean-Pierre Serre, global dimension can be used to characterize within the class of commutative Noetherian local rings those rings which are regular. Their global dimension coincides with the Krull dimension, whose definition is module-theoretic.

When the ring A is noncommutative, one initially has to consider two versions of this notion, right global dimension that arises from consideration of the right A-modules, and left global dimension that arises from consideration of the left A-modules. For an arbitrary ring A the right and left global dimensions may differ. However, if A is a Noetherian ring, both of these dimensions turn out to be equal to weak global dimension, whose definition is left-right symmetric. Therefore, for noncommutative Noetherian rings, these two versions coincide and one is justified in talking about the global dimension. The first Weyl algebra A1 is a noncommutative Noetherian domain of global dimension one.

[edit] Examples

Let A = K[x1,...,xn] be the ring of polynomials in n variables over a field K. Then the global dimension of A is equal to n. This statement goes back to David Hilbert's foundational work on homological properties of polynomial rings, see Hilbert's syzygy theorem. More generally, if R is a Noetherian ring of finite global dimension k and A = R[x] is a ring of polynomials in one variable over R then the global dimension of A is equal to k + 1.

A ring has global dimension zero if and only if it is semisimple. The global dimension of a ring A is less than or equal to one if and only if A is hereditary. In particular, a commutative principal ideal domain which is not a field has global dimension one.

[edit] Alternative characterizations

The global dimension of a ring A can be alternatively defined as:

Serre proved that a commutative Noetherian local ring A is regular if and only if it has finite global dimension, in which case the global dimension coincides with the Krull dimension of A. This theorem opened the door to application of homological methods to commutative algebra.

[edit] References

  • Eisenbud, David (1999), Commutative Algebra with a View Toward Algebraic Geometry, vol. 150 (3rd ed.), Graduate Texts in Mathematics, Springer-Verlag, ISBN 0-387-94268-8 .
  • Matsumura, Hideyuki (1989), Commutative Ring Theory, vol. 8, Cambridge Studies in Advanced Mathematics, Cambridge University Press, ISBN 0-521-36764-6 .
  • McConnell, J. C.; Robson, J. C. & Small, Lance W. (2001), Noncommutative Noetherian Rings, vol. 30, Graduate Studies in Mathematics, American Mathematical Society, ISBN 0-8218-2169-5 .
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -