ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Dyadic product - Wikipedia, the free encyclopedia

Dyadic product

From Wikipedia, the free encyclopedia

In mathematics, in particular multilinear algebra, the dyadic product

\mathbb{P} = \mathbf{u}\otimes\mathbf{v}

of two vectors, \mathbf{u} and \mathbf{v}, each having the same dimension, is the tensor product of the vectors and results in a tensor of rank two.

Contents

[edit] Components

With respect to a chosen basis \{\mathbf{e}_i\}, the components Pij of the dyadic product \mathbb{P} = \mathbf{u} \otimes \mathbf{v} may be defined by

\displaystyle P_{ij} = u_i v_j ,

where

\mathbf{u} = \sum_i u_i \mathbf{e}_i ,
\mathbf{v} = \sum_j v_j \mathbf{e}_j ,

and

\mathbb{P} = \sum_{i,j} P_{ij} \mathbf{e}_i \otimes \mathbf{e}_j .

[edit] Matrix representation

The dyadic product can be simply represented as the square matrix obtained by multiplying \mathbf{u} as a column vector by \mathbf{v} as a row vector. For example,


 \mathbf{u} \otimes \mathbf{v}
 \rightarrow
 \begin{bmatrix}
 u_1 \\
 u_2 \\
 u_3 \end{bmatrix}
 \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}
 =
 \begin{bmatrix}
 u_1v_1 & u_1v_2 & u_1v_3 \\
 u_2v_1 & u_2v_2 & u_2v_3 \\
 u_3v_1 & u_3v_2 & u_3v_3
 \end{bmatrix} ,

where the arrow indicates that this is only one particular representation of the dyadic product, referring to a particular basis. In this representation, the dyadic product is a special case of the Kronecker product.

[edit] Identities

The following identities are a direct consequence of the definition of the dyadic product[1]:


\begin{align}
  (\alpha \mathbf{u}) \otimes \mathbf{v} &= \mathbf{u} \otimes (\alpha \mathbf{v}) = \alpha (\mathbf{u} \otimes \mathbf{v}), \\
  \mathbf{u} \otimes (\mathbf{v} + \mathbf{w}) &= \mathbf{u} \otimes \mathbf{v} + \mathbf{u} \otimes \mathbf{w}, \\
  (\mathbf{u} + \mathbf{v}) \otimes \mathbf{w} &= \mathbf{u} \otimes \mathbf{w} + \mathbf{v} \otimes \mathbf{w}, \\
  (\mathbf{u} \otimes \mathbf{v}) \cdot \mathbf{w} &= \mathbf{u}\; (\mathbf{v} \cdot \mathbf{w}), \\ 
  \mathbf{u} \cdot (\mathbf{v} \otimes \mathbf{w}) &= (\mathbf{u} \cdot \mathbf{v})\; \mathbf{w}. 
\end{align}

[edit] See also

[edit] References

A.J.M. Spencer (1992). Continuum Mechanics. Dover Publications. ISBN 0486435946. .

[edit] Notes

  1. ^ See Spencer (1992), page 19.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -