Dirichlet's unit theorem
From Wikipedia, the free encyclopedia
In algebraic number theory, Dirichlet's unit theorem determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.
Contents |
[edit] Dirichlet's unit theorem
The statement is that the rank (the maximal number of multiplicatively independent elements) is
- r = r1 + r2 − 1
where r1 is the number of real embeddings and r2 the number of conjugate pairs of complex embeddings of K. This characterisation of r1 and r2 is based on the idea that there will be as many ways to embed K in the complex number field as the degree n = [K : Q]; these will either be into the real numbers, or pairs of embeddings related by complex conjugation, so that
- n = r1 + 2r2.
Other ways of determining r1 and r2 are
- use the primitive element to write K = Q(α), and then r1 is the number of conjugates of α that are real, 2r2 the number that are complex;
- write the tensor product of fields K ⊗QR as a product of fields, there being r1 copies of R and r2 copies of C.
As an example, if K is a quadratic field, the rank is 1 if it is a real quadratic field, and 0 if an imaginary quadratic field. The theory for real quadratic fields is essentially the theory of Pell's equation.
The rank is > 0 for all number fields besides Q and imaginary quadratic fields, which have rank 0. The 'size' of the units is measured in general by a determinant called the regulator. In principle a basis for the units can be effectively computed; in practice the calculations are quite involved when n is large.
The torsion in the group of units is a finite group of roots of unity, which form a cyclic group. For a number field with at least one real embedding the torsion must therefore be only {1,−1}. There are number fields, for example most imaginary quadratic fields, having no real embeddings which also have {1,−1} for the torsion of its unit group.
Totally real fields are special with respect to units. If L/K is a finite extension of number fields with degree greater than 1 and the units groups for the integers of L and K have the same rank then K is totally real and L is a totally complex quadratic extension. The converse holds too. (An example is K equal to the rationals and L equal to an imaginary quadratic field; both have unit rank 0.)
There is a generalisation of the unit theorem by Hasse (and later Chevalley) to describe the structure of the group of S-units, determining the rank of the unit group in localizations of rings of integers.
[edit] The regulator
Suppose that u1,...,ur are a set of generators for the unit group modulo roots of unity. If u is an algebraic number, write u1, ..., ur+1 for the different embeddings into R or C, and write Ni for the degree of the corresponding embedding over R (so it is 1 for real embeddings and 2 for complex ones). Then the r by r + 1 matrix whose entries are Nilog|uij| has the property that the sum of any row is zero (because all units have norm 1, and the log of the norm is the sum of the entries of a row). This implies that the absolute value R of the determinant of the submatrix formed by deleting one column is independent of the column. The number R is called the regulator of the algebraic number field (it does not depend on the choice of generators ui). It measures the "density" of the units: if the regulator is small, this means that there are "lots" of units.
The regulator has the following geometric interpretation. The maps taking a units u to the vector with entries Nilog|ui| has image in the r-dimensional subspace of Rr+1 consisting of all vectors whose entries have sum 0, and by Dirichlet's unit theorem the image is a lattice in this subspace. The volume of a fundamental domain of this lattice is R√(r+1).
Examples.
- The regulator of an imaginary quadratic field, or of the rational integers, is 1 (as the determinant of a 0×0 matrix is 1).
- We calculate the regulator of the real quadratic field Q[√5].
A fundamental unit is (√5 + 1)/2, and its images under the two embeddings into R are (√5 + 1)/2 and (−√5 + 1)/2. So the r by r + 1 matrix is
Therefore the regulator is log((√5 +1)/2).
The regulator of an algebraic number field of degree greater than 2 is usually quite cumbersome to calculate, though there are now computer algebra packages that can do it in many cases. It is usually much easier to calculate the product hR of the class number h and the regulator using the class number formula, and the main difficulty in calculating the class number of an algebraic number field is usually the calculation of the regulator.
[edit] Higher regulators
A 'higher' regulator refers to a construction for an algebraic K-group with index n > 1 that plays the same role as the classical regulator does for the group of units, which is a group K1. A theory of such regulators has been in development, with work of Armand Borel and others. Such higher regulators play a role, for example, in the Beilinson conjectures, and are expected to occur in evaluations of certain L-functions at integer values of the argument.
[edit] Stark regulator
The formulation of Stark's conjectures led Harold Stark to define what is now called the Stark regulator, similar to the classical regulator as a determinant of logarithms of units, attached to any Artin representation[1][2].
[edit] See also
[edit] References
- Jürgen Neukirch Algebraic Number Theory
- Serge Lang, Algebraic number theory, ISBN 0-387-94225-4