ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Demihypercube - Wikipedia, the free encyclopedia

Demihypercube

From Wikipedia, the free encyclopedia

In geometry, demihypercubes (also called n-demicubes, and half measure polytopes) are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as n for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed. The 2n facets become 2n (n-1)-demicubes and 2n (n-1)-simplex facets are formed in place of the deleted vertices.

They have been named with a demi- prefix to each hypercube name: demicube, demitesseract, etc. The demicube is identical to the regular tetrahedron, and the demitesseract is identical to the regular 16-cell. The demipenteract is considered semiregular for having only regular facets. Higher forms are don't have all regular facets but are all uniform polytopes.

Thorold Gosset described the demipenteract in his 1900 publication listing all of the regular and semiregular figures in n-dimensions above 3. He called it a 5-ic semi-regular. It also exists within the semiregular E-polytope family.

The demihypercubes can be represented by extended Schläfli symbols of the form h{4,3,...,3} as half the vertices of {4,3,...,3}. The vertex figures of demihypercubes are rectified n-simplexes.

They are represented by Coxeter-Dynkin diagrams of two interchangeable constructive forms: Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.png...Image:CDW_3.pngImage:CDW_dot.png = Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.png...Image:CD 3b.pngImage:CD dot.png. H.S.M. Coxeter also labeled these bifurcating figures as 1k,1 representing the lengths of the 3 branches and lead by the ringed branch.

n n 1k1 Graph Name
Schläfli symbol
Coxeter-Dynkin diagrams
Cn family
Bn family
Elements Facets:
Demihypercubes &
Simplexes
Vertex figure
Vertices Edges      Faces Cells 4-faces 5-faces 6-faces 7-faces 8-faces
2 2 1-1,1 digon
h{4}={2}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.png
Image:CDW ring.pngImage:CDW_2.pngImage:CDW_dot.png
2 2                
2 edges
--
3 3 101 demicube
(Same as tetrahedron)
h{4,3}={3,3}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.png
4 6 4             (6 digons)
4 triangles
Triangle
(Rectified triangle)
4 4 111 demitesseract
(Same as 16-cell)
h{4,3,3}={3,3,4}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.png
8 24 32 16           8 demicubes
(tetrahedra)
8 tetrahedra
Octahedron
(Rectified tetrahedron)
5 5 121 demipenteract
h{4,33}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD_dot.pngImage:CD 3b.pngImage:CD dot.png
16 80 160 120 26         10 16-cells
16 5-cells
Rectified 5-cell
6 6 131 demihexeract
h{4,34}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_dot.pngImage:CD 3b.pngImage:CD dot.png
32 240 640 640 252 44       12 demipenteracts
32 5-simplices
Rectified hexateron
7 7 141 demihepteract
h{4,35}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_dot.pngImage:CD 3b.pngImage:CD dot.png
64 672 2240 2800 1624 532 78     14 demihexeracts
64 6-simplices
Rectified heptapeton
8 8 151 demiocteract
h{4,36}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_dot.pngImage:CD 3b.pngImage:CD dot.png
128 1792 7168 10752 8288 4032 1136 144   16 demihepteracts
128 7-simplices
Rectified octaexon
9 9 161 demienneract
h{4,37}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png
Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD_dot.pngImage:CD 3b.pngImage:CD dot.png
256 4608 21504 37632 36288 23520 9888 2448 274 18 demiocteracts
256 8-simplices
Rectified enneazetton
...
n n 1n-3,1 n-demicube
h{4,3n-2}
Image:CDW_hole.pngImage:CDW_4.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.pngImage:CDW_3b.pngImage:CDW_dot.png...Image:CDW_3b.pngImage:CDW_dot.png
Image:CD ring.pngImage:CD 3b.pngImage:CD_downbranch-00.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.pngImage:CD 3b.pngImage:CD dot.png...Image:CD 3b.pngImage:CD dot.png
2n-1 n(n-1)2n-3 ? ? ? ? ? ? ? 2n (n-1)-demicubes
2n (n-1)-simplices
Rectified (n-1)-simplex

[edit] See also

[edit] References

[edit] External links


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -