ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
D'Agostino's K-squared test - Wikipedia, the free encyclopedia

D'Agostino's K-squared test

From Wikipedia, the free encyclopedia

In statistics, D'Agostino's K2 test is a goodness-of-fit measure of departure from normality, based on transformations of the sample kurtosis and skewness. The test statistic K2 is obtained as follows:

In the following derivation, n is the number of observations (or degrees of freedom in general); \sqrt{b_1} is the sample skewness, b2 is the sample kurtosis, defined as


\sqrt{ b_1 } = \frac{ \mu_3 }{ \sigma^3 } = \frac{ \mu_3 }{ \left( \sigma^2 \right)^{3/2} } = \frac{ \frac{1}{n} \sum_{i=1}^n \left( x - \bar{x} \right)^3}{ \left( \frac{1}{n} \sum_{i=1}^n \left( x - \bar{x} \right)^2 \right)^{3/2}}

b_2 = \frac{ \mu_4 }{ \sigma^4 } = \frac{ \mu_4 }{ \left( \sigma^2 \right)^{2} } = \frac{\frac{1}{n} \sum_{i=1}^n \left( x - \bar{x} \right)^4}{\left( \frac{1}{n} \sum_{i=1}^n \left( x - \bar{x} \right)^2 \right)^2}

where μ3 and μ4 are the third and fourth central moments, respectively, \bar{x} is the sample mean, and σ2 is the second central moment, the variance.

Contents

[edit] Transformed Skewness

First, calculate Z\left(\sqrt{b_1}\right), a transformation of the skewness \sqrt{b_1} that is approximately normally distributed under the null hypothesis that the data are normally distributed.


Y = \sqrt{b_1} \cdot \sqrt{\frac{(n+1)(n+3)}{6(n-2)}}

\beta_2\left(\sqrt{b_1}\right) = \frac{3(n^2+27n-70)(n+1)(n+3)}{(n-2)(n+5)(n+7)(n+9)}

W^2 = -1 + \sqrt{2 (\beta_2\left(\sqrt{b_1}\right) - 1)}

\delta = 1/\sqrt{ln(W)}

\alpha = \sqrt{\frac{2}{W^2-1}}

Z\left(\sqrt{b_1}\right) = \delta ln\left(Y/\alpha + \sqrt{(Y/\alpha)^2 + 1}\right)

[edit] Transformed Kurtosis

Next, calculate Z\left(b_2\right), a transformation of the kurtosis b2 that is approximately normally distributed under the null hypothesis that the data are normally distributed.


E\left(b_2\right) = \frac{3(n-1)}{n+1}

\sigma^2_{b_2} = \frac{24n(n-2)(n-3)}{(n+1)^2(n+3)(n+5)}

x = \frac{b_2 - E\left(b_2\right)}{\sigma_{b_2}}

Next, compute the skewness of the kurtosis:


\sqrt{\beta_1\left(b_2\right)} = \frac{6(n^2-5n+2)}{(n+7)(n+9)} \sqrt{\frac{6(n+3)(n+5)}{n(n-2)(n-3)}}

A = 6 + \frac{8}{\sqrt{\beta_1\left(b_2\right)}} \left[ \frac{2}{\sqrt{\beta_1\left(b_2\right)}} + \sqrt{1+\frac{4}{\beta_1\left(b_2\right)}}\right]

Z\left(b_2\right) = \left(\left(1 - \frac{2}{9A}\right) - \sqrt[3]{\frac{1-2/A}{1+x\sqrt{2/(A-4)}}}\right)\sqrt{\frac{9A}{2}}

[edit] Omnibus K2 statistic

Now, we can combine Z\left(\sqrt{b_1}\right) and Z\left(b_2\right) to define D'Agostino's Ombibus K2 test for normality.


K^2 = \left(Z\left(\sqrt{b_1}\right)\right)^2 + \left(Z\left(b_2\right)\right)^2

K2 is approximately distributed as χ2 with 2 degrees of freedom.

[edit] References

  • D'Agostino, Ralph B., Albert Belanger, and Ralph B. D'Agostino, Jr. "A Suggestion for Using Powerful and Informative Tests of Normality", The American Statistician, Vol. 44, No. 4. (Nov., 1990), pp. 316-321.
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -