ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Classical treatment of tensors - Wikipedia, the free encyclopedia

Classical treatment of tensors

From Wikipedia, the free encyclopedia

 Disambiguation
Note: The following is a component-based "classical" treatment of tensors. See Component-free treatment of tensors for a modern abstract treatment, and Intermediate treatment of tensors for an approach which bridges the two.
This article uses Einstein notation. For help, refer to the table of mathematical symbols.

A tensor is a generalization of the concepts of vectors and matrices. Tensors allow one to express physical laws in a form that applies to any coordinate system. For this reason, they are used extensively in continuum mechanics and the theory of relativity.

A tensor is an invariant multi-dimensional transformation, one that takes forms in one coordinate system into another. It takes the form:

T^{\left[i_1,i_2,i_3,...i_n\right]}_{\left[j_1,j_2,j_3,...j_m\right]}

The new coordinate system is represented by being 'barred'(\bar{x}^i), and the old coordinate system is unbarred(xi).

The upper indices [i1,i2,i3,...in] are the contravariant components, and the lower indices [j1,j2,j3,...jn] are the covariant components.

Contents

[edit] Contravariant and covariant tensors

A contravariant tensor of order 1(Ti) is defined as:

\bar{T}^i = T^r\frac{\partial \bar{x}^i}{\partial x^r}.

A covariant tensor of order 1(Ti) is defined as:

\bar{T}_i = T_r\frac{\partial x^r}{\partial \bar{x}^i}.

[edit] General tensors

A multi-order (general) tensor is simply the tensor product of single order tensors:

T^{\left[i_1,i_2,...i_p\right]}_{\left[j_1,j_2,...j_q\right]} = T^{i_1} \otimes T^{i_2} ... \otimes T^{i_p} \otimes T_{j_1} \otimes T_{j_2} ... \otimes T_{j_q}

such that:

\bar{T}^{\left[i_1,i_2,...i_p\right]}_{\left[j_1,j_2,...j_q\right]} = 
T^{\left[r_1,r_2,...r_p\right]}_{\left[s_1,s_2,...s_q\right]}
\frac{\partial \bar{x}^{i_1}}{\partial x^{r_1}}
\frac{\partial \bar{x}^{i_2}}{\partial x^{r_2}}
...
\frac{\partial \bar{x}^{i_p}}{\partial x^{r_p}}
\frac{\partial x^{s_1}}{\partial \bar{x}^{j_1}}
\frac{\partial x^{s_2}}{\partial \bar{x}^{j_2}}
...
\frac{\partial x^{s_q}}{\partial \bar{x}^{j_q}}.

This is sometimes termed the tensor transformation law.

[edit] See also

[edit] Further reading

  • Schaum's Outline of Tensor Calculus
  • Synge and Schild, Tensor Calculus, Toronto Press: Toronto, 1949
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -