ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Catalan's constant - Wikipedia, the free encyclopedia

Catalan's constant

From Wikipedia, the free encyclopedia

In mathematics, Catalan's constant K, which occasionally appears in estimates in combinatorics, is defined by

\Kappa = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots

where β is the Dirichlet beta function. Its numerical value [1] is approximately

K = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 …

It is not known whether K is rational or irrational.

Catalan's constant was named after Eugène Charles Catalan.

Contents

[edit] Integral identities

Some identities include

K = -\int_{0}^{1} \frac{\ln(t)}{1 + t^2} dt
K = \int_0^1 \int_0^1 \frac{1}{1+x^2 y^2} dx dy
K = \int_{0}^{\pi/4} \frac{t}{\sin(t) \cos(t)} dt

along with

 K = \frac{1}{2}\int_0^1 \mathrm{K}(x)\,dx

where K(x) is a complete elliptic integral of the first kind, and

 K = \int_0^1 \frac{\tan^{-1}x}{x}dx.

[edit] Uses

K appears in combinatorics, as well as in values of the second polygamma function, also called the trigamma function, at fractional arguments:

 \psi_{1}\left(\frac{1}{4}\right) = \pi^2 + 8K
 \psi_{1}\left(\frac{3}{4}\right) = \pi^2 - 8K

Simon Plouffe gives an infinite collection of identities between the trigamma function, π2 and Catalan's constant; these are expressible as paths on a graph.

It also appears in connection with the hyperbolic secant distribution.

[edit] Quickly converging series

The following two formulas involve quickly converging series, and are thus appropriate for numerical computation:

K = \, 3 \sum_{n=0}^\infty \frac{1}{2^{4n}}
\left(
-\frac{1}{2(8n+2)^2}
+\frac{1}{2^2(8n+3)^2}
-\frac{1}{2^3(8n+5)^2}
+\frac{1}{2^3(8n+6)^2}
-\frac{1}{2^4(8n+7)^2}
+\frac{1}{2(8n+1)^2}
\right) -

2 \sum_{n=0}^\infty \frac{1}{2^{12n}}
\left(
\frac{1}{2^4(8n+2)^2}
+\frac{1}{2^6(8n+3)^2}
-\frac{1}{2^9(8n+5)^2}
-\frac{1}{2^{10} (8n+6)^2}
-\frac{1}{2^{12} (8n+7)^2}
+\frac{1}{2^3(8n+1)^2}
\right)

and

K = \frac{\pi}{8} \log(\sqrt{3} + 2) + \frac{3}{8} \sum_{n=0}^\infty \frac{(n!)^2}{(2n)!(2n+1)^2}.

The theoretical foundations for such series is given by Broadhurst.[1]

[edit] Known digits

The number of known digits of Catalan's constant K has increased dramatically during the last decades. This is due both to the increase of performance of computers as well as to algorithmic improvements.[2]

Number of known decimal digits of Catalan's constant K
Date Decimal digits Computation performed by
October 2006 5,000,000,000 Shigeru Kondo[3]
2002 201,000,000 Xavier Gourdon & Pascal Sebah
2001 100,000,500 Xavier Gourdon & Pascal Sebah
January 4, 1998 12,500,000 Xavier Gourdon
1997 3,379,957 Patrick Demichel
1996 1,500,000 Thomas Papanikolaou
September 29, 1996 300,000 Thomas Papanikolaou
August 14, 1996 100,000 Greg J. Fee & Simon Plouffe
1996 50,000 Greg J. Fee
1990 20,000 Greg J. Fee
1913 32 James W. L. Glaisher
1877 20 James W. L. Glaisher

[edit] See also

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -