ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
C-minimal theory - Wikipedia, the free encyclopedia

C-minimal theory

From Wikipedia, the free encyclopedia

In model theory, a branch of mathematical logic, a C-minimal theory is a theory that is "minimal" with respect to a ternary relation C with certain properties. Algebraically closed fields with a (Krull) valuation are perhaps the most important example.

This notion was defined in analogy to the o-minimal theories, which are "minimal" (in the same sense) with respect to a linear order.

[edit] Definition

A C-relation is a ternary relation C(x;yz) that satisfies the following axioms.

  1. \forall xyz\, [ C(x;yz)\rightarrow C(x;zy) ],
  2. \forall xyz\, [ C(x;yz)\rightarrow\neg C(y;xz) ],
  3. \forall xyzw\, [ C(x;yz)\rightarrow (C(w;yz)\vee C(x;wz)) ],
  4. \forall xy\, [ x\neq y \rightarrow \exists z\neq y\, C(x;yz) ].

A C-minimal structure is a structure M, in a signature containing the symbol C, such that C satisfies the above axioms and every set of elements of M that is definable with parameters in M is a Boolean combination of instances of C, i.e. of formulas of the form C(x;bc), where b and c are elements of M.

A theory is called C-minimal if all of its models are C-minimal. A structure is called strongly C-minimal if its theory is C-minimal. One can construct C-minimal structures which are not strongly C-minimal.

[edit] Example

For a prime number p and a p-adic number a let |a|p denote its p-adic norm. Then the relation defined by C(a;bc) \iff |b-c|_p < |a-c|_p is a C-relation, and the theory of Qp is with addition and this relation is C-minimal. The theory of Qp as a field, however, is not C-minimal.

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -