ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Beta-function - Wikipedia, the free encyclopedia

Beta-function

From Wikipedia, the free encyclopedia

In theoretical physics, specifically quantum field theory, a beta-function β(g) encodes the dependence of a coupling parameter, g, on the energy scale, μ of a given physical process. It is defined by the relation:

\beta(g) = \mu\,\frac{\partial g}{\partial \mu}.

This dependence on the energy scale is known as the running of the coupling parameter, and theory of this kind of scale-dependence in quantum field theory is described by the renormalization group.

Contents

[edit] Scale invariance

If the beta-functions of a quantum field theory vanish, usually at particular values of the coupling parameters, then the theory is said to be scale-invariant. Almost all scale-invariant QFTs are also conformally invariant. The study of such theories is conformal field theory.

The coupling parameters of a quantum field theory can run even if the corresponding classical field theory is scale-invariant. In this case, the non-zero beta function tells us that the classical scale invariance is anomalous.

[edit] Examples

Beta-functions are usually computed in some kind of approximation scheme. An example is perturbation theory, where one assumes that the coupling parameters are small. One can then make an expansion in powers of the coupling parameters and truncate the higher-order terms (also known as higher loop contributions, due to the number of loops in the corresponding Feynman graphs).

Here are some examples of beta-functions computed in perturbation theory:

[edit] Quantum electrodynamics

The one-loop beta-function in quantum electrodynamics (QED) is

  • \beta(e)=\frac{e^3}{12\pi^2}

or

  • \beta(\alpha)=\frac{2\alpha^2}{3\pi},

written in terms of the fine structure constant, \alpha=\frac{e^2}{4\pi}.

This beta-function tells us that the coupling increases with increasing energy scale, and QED becomes strongly coupled at high energy. In fact, the coupling apparently becomes infinite at some finite energy, resulting in a Landau pole. However, one cannot expect the perturbative beta-function to give accurate results at strong coupling, and so it is likely that the Landau pole is an artifact of applying perturbation theory in a situation where it is no longer valid.

[edit] Quantum chromodynamics

The one-loop beta-function in quantum chromodynamics with nf flavours is

  • \beta(g)=-\left(11-\frac{2n_f}{3}\right)\frac{g^3}{16\pi^2}

or

  • \beta(\alpha_s)=-\left(11-\frac{2n_f}{3}\right)\frac{\alpha_s^2}{2\pi},

written in terms of \alpha_s=\frac{g^2}{4\pi}.

If n_f\leq 16, this beta-function tells us that the coupling decreases with increasing energy scale, a phenomenon known as asymptotic freedom. Conversely, the coupling increases with decreasing energy scale. This means that the coupling becomes large at low energies, and one can no longer rely on perturbation theory.

[edit] See also

[edit] References

  • Peskin, M and Schroeder, D. ;An Introduction to Quantum Field Theory, Westview Press (1995). A standard introductory text, covering many topics in QFT including calculation of beta-functions.
  • Weinberg, Steven ; The Quantum Theory of Fields, (3 volumes) Cambridge University Press (1995). A monumental treatise on QFT.
  • Zinn-Justin, Jean ; Quantum Field Theory and Critical Phenomena, Oxford University Press (2002). Emphasis on the renormalization group and related topics.

[edit] External links

Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -