ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Barnes G-function - Wikipedia, the free encyclopedia

Barnes G-function

From Wikipedia, the free encyclopedia

In mathematics, the Barnes G-function (typically denoted G(z)) is a function that is an extension of superfactorials to the complex numbers. It is related to the Gamma function, the K-function and the Glaisher-Kinkelin constant, and was named after mathematician Ernest William Barnes.[1]

Formally, the Barnes G-function is defined (in the form of a Weierstrass product) as

G(z+1)=(2\pi)^{z/2} e^{-[z(z+1)+\gamma z^2]/2}\prod_{n=1}^\infty \left[\left(1+\frac{z}{n}\right)^ne^{-z+z^2/(2n)}\right]

where γ is the Euler-Mascheroni constant.

Contents

[edit] Difference equation, functional equation and special values

The Barnes G-function satisfies the difference equation

G(z + 1) = Γ(z)G(z)

with normalisation G(1)=1. The difference equation implies that G takes the following values at integer arguments:

G(n)=\begin{cases} 0&\mbox{if }n=0,-1,-2,\dots\\ \prod_{i=0}^{n-2} i!&\mbox{if }n=1,2,\dots\end{cases}

and thus

G(n)=\frac{(\Gamma(n))^{n-1}}{K(n)}

where Γ denotes the Gamma function and K denotes the K-function. The difference equation uniquely defines the G function if the convexity condition: \frac{d^3}{dx^3}G(x)\geq 0 is added[2].

The difference equation for the G function and the functional equation for the Gamma function yield the following functional equation for the G function, originally proved by Hermann Kinkelin:

 G(1-z) = G(1+z)\frac{ 1}{(2\pi)^z} \exp \int_0^z \pi z \cot \pi z \, dz.

[edit] Multiplication formula

Like the Gamma function, the G-function also has a multiplication formula[3]:


G(nz)= K(n) n^{n^{2}z^{2}/2-nz} (2\pi)^{-\frac{n^2-n}{2}z}\prod_{i=0}^{n-1}\prod_{j=0}^{n-1}G\left(z+\frac{i+j}{n}\right)

where K(n) is a constant given by:

 K(n)= e^{-(n^2-1)\zeta^\prime(-1)} \cdot
n^{\frac{5}{12}}\cdot(2\pi)^{(n-1)/2}\,=\,
(Ae^{-\frac{1}{12}})^{n^2-1}\cdot n^{\frac{5}{12}}\cdot (2\pi)^{(n-1)/2}.


Here \zeta^\prime is the derivative of the Riemann zeta function and A is the Glaisher-Kinkelin constant.

[edit] Asymptotic Expansion

The function \log \,G(z+1 ) has the following asymptotic expansion established by Barnes:

 \log G(z+1)=\frac{1}{12} - \log A + \frac{z}{2}\log 2\pi +\left(\frac{z^2}{2} -\frac{1}{12}\right)\log z -\frac{3z^2}{4}+
\sum_{k=1}^{N}\frac{B_{2k+2}}{4k\left(k+1\right)z^{2k}} + O\left(\frac{1}{z^{2N+2}}\right).

Here the Bk are the Bernoulli numbers and A is the Glaisher-Kinkelin constant. (Note that somewhat confusingly at the time of Barnes [4] the Bernoulli number B2k would have been written as ( − 1)k + 1Bk, but this convention is no longer current.) This expansion is valid for z in any sector not containing the negative real axis with | z | large.

[edit] References

  1. ^ E.W.Barnes, "The theory of the G-function", Quarterly Journ. Pure and Appl. Math. 31 (1900), 264-314.
  2. ^ M. F. Vignéras, L'équation fonctionelle de la fonction zêta de Selberg du groupe mudulaire SL(2,\mathbb{Z}), Astérisque 61, 235-249 (1979).
  3. ^ I. Vardi, Determinants of Laplacians and multiple gamma functions, SIAM J. Math. Anal. 19, 493-507 (1988).
  4. ^ E.T.Whittaker and G.N.Watson, "A course of modern analysis", CUP.


This number theory-related article is a stub. You can help Wikipedia by expanding it.
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -