See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Farbwahrnehmung – Wikipedia

Farbwahrnehmung

aus Wikipedia, der freien Enzyklopädie

Die Farbwahrnehmung ist als Teilbereich des Sehens die Fähigkeit, elektromagnetische Wellen verschiedener Wellenlängen in ihrer Intensität zu unterscheiden. Diese Fähigkeit ist im ganzen Tierreich verbreitet. Das Absorptionsspektrum der wahrgenommenen und unterscheidbaren Wellenlängen charakterisiert artspezifisch diese visuelle Qualität.

Inhaltsverzeichnis

[Bearbeiten] Physiologie

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf bitte mit, ihn zu verbessern, und entferne anschließend diese Markierung.

[Bearbeiten] Grundlagen

Das Wahrnehmungssystem muss mindestens zwei (beim Menschen sind es drei) unterschiedliche Typen von „Lichtrezeptoren“ haben, um unterschiedliche Zusammensetzungen des Lichts feststellen zu können.

Der Mensch besitzt zwei unterschiedliche Systeme von Lichtrezeptoren. Das eine davon (Stäbchen) ist wesentlich empfindlicher, enthält aber nur einen Typ. Diese Rezeptoren können folglich keine Farben unterscheiden. Damit das System der Farbrezeptoren (Zapfen) beim Menschen reagiert, ist eine Leuchtdichte von mindestens 0,1  cd/cm² nötig (photopisches Sehen). Unter dieser Schwelle sind nur Hell-Dunkel-Unterschiede wahrnehmbar (skotopisches oder Nachtsehen), da von den Zapfen keine Information kommt.

Zwar ist bei der Entstehung von Farben zu unterscheiden, ob das als farbig wahrgenommene Objekt Licht abstrahlt, oder ob es Fremdlicht reflektiert, streut, beugt oder bricht. Der auftreffende Farbreiz ist allerdings davon unabhängig.

Im Alltag „kommt die Farbe“ meist von Körpern, die durch Licht mit einem kontinuierlichen Spektrum beleuchtet werden. Solches „weißes Licht“ wird in der Regel von heißen Körpern mit unterschiedlichen Tönungen ausgestrahlt, Beispiele sind die Sonne, die Kerzenflamme oder Glühlampen. Durch Entwicklungen neuerer Technik nehmen Lichtquellen zu, die gut definierte Wellenlängen aussenden, Ursache dafür sind Elektronensprünge in den Energieniveaus der Atome. Beispiele dafür sind Natriumdampflampen, LEDs und Laser. Licht kann durch Filter eingefärbt sein, Beispiele sind Farbgläser der Verkehrsampel, Brechung oder Beugung an Gitterstrukturen zerlegt Licht nach Wellenlängen mit dem Ergebnis unterschiedlicher Farben, Beispiele sind die Farben hinter Prisma oder schillernde CD. Andere Ursachen sind Interferenz an dünnen Schichten, wie bei "Öllaken". Körper absorbieren aus auftreffendem „weißem Licht“ einige Wellenlängen, das rückgestrahlte remittierte Licht ist sodann wegen des veränderten Spektrums farbig, hier sind rotes Blut, grüne Blätter die Beispiele.

Der Farbreiz von unterschiedlicher spektraler Zusammensetzung des Lichts kann zum selben Farbeindruck (Farbvalenz) führen. Das Rot der Verkehrsampel entsteht durch einen Glasfilter, der nur das Glühlampenlicht mit Wellenlängen rund um 650 nm durchlässt. Das Rot eines Glanzkäfers oder Kolibris kann durch Interferenz des Sonnenlichtes entstehen, indem hier bestimmte, von der Schichtdicke abhängige Wellenlängen befördert, andere absorbiert werden. Die unterschiedliche Entstehungsmöglichkeit des gleichen Farbeindrucks bezeichnet man als (Metamerie)

[Bearbeiten] Sichtbare Strahlung

Für Menschen ist die elektromagnetische Strahlung des Lichtspektrums im Wellenlängenbereich von 380 bis 780 nm sichtbar. Unter besonderen Umständen auch das Spektrum von 300 bis 820 nm, etwa bei vorhergehendem chirurgischen Eingriff am Auge.

[Bearbeiten] Die Sehzellen

Absorptionskurven der Zapfen des Menschen
Absorptionskurven der Zapfen des Menschen

Photonen lösen in den Sehzellen (Photorezeptoren) durch einen chemischen Vorgang am Eiweiß des Sehpurpur elektrische Signale (Rezeptorpotentiale) aus. Über die Sehnerven, die in der Netzhaut beginnen werden diese Signale ins Zentralnervensystem geleitet und zu einem Farbeindruck verarbeitet.

Photorezeptoren existieren in zwei Systemen.

  • Stäbchen existieren einem System und registrieren dadurch nur Hell-Dunkel-Kontraste und sind auch bei geringer Lichtintensität, unter 0,1 cd/cm² noch aktiv.
  • Die Zapfen (Farbrezeptoren) sind in drei Arten in einem getrennten System vorhanden sie registrieren die spektrale Farbvalenz, jede Art hat eine spezifische spektral Empfindlichkeit.
    • L-Zapfen (L wie Long) sind für längere Wellenlängen empfindlich. Das Absorptionsmaximum liegt etwa bei 560 nm, entsprechend einem grünlichens Gelb.
    • M-Zapfen (M wie Medium) sind für für mittlere Wellenlängen enpfindlich. Das Absorptionsmaximum liegt etwa bei 530 nm, entsprechend einem Gelbgrün)
    • S-Zapfen (S wie Short) sind für kürzere Wellenlängen empfindlich. Das Absorptionsmaximum liegt etwa bei 420 nm, einem Blau). S-Zapfen sind nur mit einem Anteil von 12 Prozent aller Zapfen beim Menschen vorhanden.

Zapfen unterscheiden keine Wellenlängen direkt. Das Absorptionsspektrum der Zapfen gibt lediglich die Wahrscheinlichkeit an, mit der Licht einer bestimmten Wellenlänge ein Aktionspotential auslöst. Ein Aktionspotential kann von einem Photon mit der Wellenlänge A ausgelöst worden sein, aber auch von einem Photon mit der Wellenlänge B. Um also Farben zu unterscheiden, muss das Gehirn die Antworten von mindestens zwei verschiedenen Zapfentypen vergleichen. Je mehr Zapfentypen vorhanden sind, desto größer sind die Unterscheidungsmöglichkeiten. Dieses Prinzip der Univarianz stammt von Rushton (1972).

Lichtempfindliche Rezeptoren existieren nicht nur bei Primaten, wie dem Menschen, sondern auch bei vielen verschiedenen Tierarten aus ganz unterschiedlichen Verwandschaftsgruppen (Wirbeltiere, Gliedertiere, Weichtiere).

Absorptionsmaxima verschiedener Zapfentypen (Stäbchen) im Vergleich
Zapfentypen: UV S M L Stäbchen
Mensch [1] - 424 nm 530 nm 560 nm *
Mensch [2] - 420 nm 535 nm 565 nm *
Mensch [3] - 420 nm 530 nm 560 nm 500 nm
Rhesusaffe [4] - * 540 nm 565 nm 505 nm
Pferd  - 428 nm 539 nm  -
Vögel [1] 370 nm 445 nm 508 nm 565 nm
Goldfisch (carassius aureatus) [5] 356 nm 447 nm 537 nm 623 nm
Empfindlichkeitskurven der Netzhaut des Menschen in Abhängigkeit von der Wellenlänge. Die Kurve für den S-Rezeptor ist um den Faktor 3 überhöht dargestellt. Z = Sehgrube (fovea centralis)
Empfindlichkeitskurven der Netzhaut des Menschen in Abhängigkeit von der Wellenlänge. Die Kurve für den S-Rezeptor ist um den Faktor 3 überhöht dargestellt. Z = Sehgrube (fovea centralis)

Anmerkung:

  • Absorption wird hier als Zahl der von einem Zapfen pro Sekunde aufgenommenen Photonen bestimmt.
  • Die genannten Absorptionsmaxima sind nur Richtwerte, Unterschiede gibt es nicht nur zwischen den Arten, sondern auch von Individuum zu Individuum.
Die Zapfendichte ist ungefähr in der Netzhautmitte (Punkt des schärfsten Sehens, Fovea centralis) am größten, am Rand des Gesichtfeldes sind hingegen kaum noch Zapfen zu finden, dafür viele Stäbchen für die stäbchenvermittelte Nachtsicht. In der Fovea centralis gibt es dafür keine Stäbchen, daher kann man nachts zum Beispiel schwach sichtbare Sterne nur sehen, wenn man etwas an ihnen "vorbeischaut".

[Bearbeiten] Funktionen der Sehzellen

Quellenangaben
Dieser Artikel oder Abschnitt ist nicht hinreichend mit Belegen (Literatur, Webseiten oder Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst gelöscht. Hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Bitte entferne zuletzt diese Warnmarkierung.

Zapfen und Stäbchen sind mit den nachfolgenden Nervenzellen der Netzhaut derart „verschaltet“, dass neben Registrierung der Farbqualität noch weitere Bearbeitungsprozesse möglich sind.

  • Das schnelle Rot-Grün-System dient der Kantenverstärkung, die M- und L-Zapfen entstammen stammesgeschichtlich einem gemeinsamen Entwicklungsstand. Die Differenz von L- (Rot) und M- (Grün)signal wird mit der Summe beider verglichen. Bei Isoluminanzbedingungen unter Laborbedingungen, d.h. beide Zapfentypen werden mit rotem und grünem Licht gleicher Stärke beleuchtet, kann dies zum Verschwinden scharfer Kanten führen kann (minimally distinct border-Phänomen).
  • Das langsamere Blau-Gelb-System ist für die Farbkonstanz zuständig.
  • Das Signal des Rotzapfens alleine wird vermutlich zur Bewegungsdetektion langsamer Bewegungen verwendet.

[Bearbeiten] Ganglienzellen

Es gibt drei Klassen von Ganglienzellen in der Netzhaut: Hell-Dunkel-System mit On- und Off-Zentrum-Feldern (zur Erhöhung des Kontrastes – On-Zentrum: Belichtung des Zentrums ergibt Erregung, Belichtung der Peripherie ergibt Hemmung, Off-Zentrum umgekehrt), Gelb-Blau-System (Gelb löst Aktivierung des Zentrums und Hemmung der Peripherie, Blau umgekehrt), Rot-Grün-System (Rot Aktivierung des Zentrums, Hemmung der Peripherie, Grün umgekehrt)

Die Umrechnung von Drei- auf Vierfarben-System erfolgt durch Subtraktion und Addition der Rezeptor-Information.

[Bearbeiten] Farbe

[Bearbeiten] Farbreiz, Farbvalenz und Farbeindruck

Vergleich der Zapfen- und Stäbchen-Absorption von Mensch und Rhesusaffe (mikrophotometrisch von Bowmaker 1978 bzw. 1983 vermessen)
Vergleich der Zapfen- und Stäbchen-Absorption von Mensch und Rhesusaffe (mikrophotometrisch von Bowmaker 1978 bzw. 1983 vermessen)
Farbreiz - Farbvalenz - Farbeindruck im Kontrast rot-grün und blau-gelb variiert in Hell/Dunkel
Farbreiz - Farbvalenz - Farbeindruck im Kontrast rot-grün und blau-gelb variiert in Hell/Dunkel

Der Farbreiz ist die Strahlungsleistung, die in den Zapfen der Netzhaut des Auges absorbiert wird. Er ist die physikalische Ursache von Farbvalenz und Farbempfindung.

Der Farbvalenz ist die physiologische Stufe der Farbempfindung, sie ist charakterisiert durch die Erregungszustände der drei Zapfenarten des menschlichen Auges, die vom (physikalischen) Farbreiz ddefiniert sind.

Der Farbeindruck wird unter Mitwirkung der (auftreffenden) „mittleren“ Gesamthelligkeit und über die Farbkonstanzleistungen des Gehirns. Das trichromatische Sehen, also die Reizantwort der drei Zapfenarten, trifft nicht das Bewusstsein. Auf der Reizleitung ab der Sehzellen zum wahrnehmenden Großhirn werden durch Nervenübergänge die Parameterpaare Schwarz/Weiß (Hellwert), Rot/Grün, Blau/Gelb (zwei konträre Buntpaare) geformt. Ein dreidimensionaler Farbraum kommt der menschlichen Farbwahrnehmung näher als ein „Zapfenraum“, so bekommen diese drei Farbpaare eine exklusive Bedeutung.

Siehe auch Spektralfarbe

[Bearbeiten] Farbe und Helligkeit

V(lambda)-Kurve: Hellempfindlichkeitskurve für Nacht-(links) und Tagsehen
V(lambda)-Kurve: Hellempfindlichkeitskurve für Nacht-(links) und Tagsehen

Erst ab einer bestimmten Helligkeit ist die aus drei Komponenten gebildete Farbenwelt gegeben, das trichromatische Sehen mit den Zapfen, die jeweils unterschiedliche Opsine enthalten (dieser Helligkeitsbereich wird in der V(lambda)-Kurve dargestellt). Diese drei Zapfentypen, deren Erregungen die Farbvalenz der einfallenden Strahlung als untrennbare Gesamtwirkung der drei Einzelerregungen liefern, haben unterschiedliche spektrale Empfindlichkeitskurven beim durchschnittlichen farbnormalsichtigen Beobachter. Normiert auf gleiche Gesamtflächen der drei Kurvenzüge ergeben sich die Normspektralwertfunktionen. Wenn also jeder Rezeptor 1/3 der Gesamterregung liefert, dann wird unbunt (weiß, grau oder schwarz) empfunden. Die Größe der Gesamterregung (B + G + R) ergibt die Farbhelligkeit. Der Farbton ist durch die relativen Erregungen b, g, r gegeben: b = B / (B + G + R) usw. Da gilt: b + g + r = 1, braucht man nur zwei Anteile (r und g) anzugeben, um einen Farbton eindeutig zu kennzeichnen. In einer r-g-Ebene ist nur ein Dreieck möglich, weil es keine negativen Erregungen gibt. Die Ecken des Dreiecks können nicht erreicht werden, weil es keinen Farbreiz gibt, der nur einen Farbrezeptor erregt. Der Spektralfarbenzug schließt sich nicht. Um den Bogen zu schließen, braucht man die Mischfarben zwischen Violett und Rot, die Purpurgerade. Im CIE-Normvalenzsystem ergibt sich die Normfarbtafel, die auch in die DIN 5033 eingeflossen ist.

[Bearbeiten] Theorien der Farbwahrnehmung

  • Drei-Farben-Theorie von Thomas Young (weiterentwickelt von Hermann von Helmholtz): Es gibt drei Sehzell-Typen für drei Farben, die als Primärfarben bezeichnet werden. Nach Helmholtz lassen sich alle anderen Farben einschließlich Weiß und Schwarz durch additive oder subtraktive Mischung aus 3 Grundfarben erzeugen, z.B. additiv aus Rot-Grün-Blau (RGB).
  • Gegenfarbtheorie: Nach Ewald Hering gibt es einen Kreis von Farben mit paarweise gegenüberliegenden Gegenfarben: Rot-Blaugrün, Purpur-Grün, Blau-Orange, Violett-Gelb. Jedes Paar von Gegenfarben ergibt in subtraktiver Mischung Schwarz und in additiver Mischung Weiß.
  • Kries-Zonentheorie: Johannes von Kries (er arbeitete unter Helmholtz) führte aufgrund neurophysiologischer Forschungsergebnisse beide Theorien zusammen: Auf Rezeptorebene gilt die Drei-Farben-Theorie, bei der Verarbeitung im Zwischenhirn werden die Signale aber zu Gegenfarben verrechnet.

[Bearbeiten] Der Zapfenerregungsraum als Farbraummodell

Unterschiedliche Sättigungen der Farben zum Weiß oder zum Schwarz hin können mit einer zweidimensionalen Normfarbtafel jedoch nicht berücksichtigt werden. Hierzu braucht man ein dreidimensionales Gebilde, den Farbraum, wie beispielsweise eine Kugel, bei der ein Weißpol und ein Schwarzpol vorhanden sind, und ein Farbkreis den Äquator bildet.

Sollen aber alle Farbtöne gleich unterschiedlich von einander entfernt sein, verändert sich diese Kugel zu einem seltsam geformten Farbkörper, in dem sie bei Blau einen Bauch bekommt, sich bei Purpur und Rot abflacht, sowie bei Gelb ein weit herausstehendes 'Knie' (eine Ecke) bekommt. Dieser subjektiv bestimmte Körper deckt sich erstaunlicherweise mit dem möglichen, aus den Zapfenerregungsfunktionen errechneten Erregungsraum.

Siehe auch Entstehung von Farben

[Bearbeiten] Metamere Farbgleichheit

Jede Kombination der drei Farbvalenzen bewirkt einen spezifischen Reiz. Dabei können unterschiedliche spektrale Zusammensetzungen des Lichts den gleichen Farbeindruck hervorrufen; diesen Effekt nennt man metamere Farbgleichheit. Die Basis für diesen Effekt ist, dass das kontinuierliche erregende Spektrum auf drei diskrete Werte abgebildet wird. Diese mathematische Operation ist in der Richtung zum Farbreiz eindeutig, aber nicht in der Gegenrichtung. In der Technik wird dieser Effekt genutzt. Mit Hilfe dreier schmalbandiger Lichtquellen, zum Beispiel der drei Leuchtphosphore auf Fernsehbildschirmen, wird ein Großteil der in der Realität vorkommenden Farbeindrücke auf dem Bildschirm nachgebildet. Zum Beispiel kann durch Addition von etwas rotem mit viel blauem (kurzwelligem) Licht der Farbeindruck "violett" erzeugt werden, obwohl spektralreines Violett noch kurzwelliger als das Blau wäre. (Dieses gemischte Violett hat allerdings eine etwas geringere maximale Farbsättigung und sieht aus, als hätte man dem spektralreinen Violett noch ein klein wenig Grau hinzu gegeben.)

Die Umwandlungen zwischen technischen Geräten, mithin zwischen Farbräumen, sind durch Matrixprodukte mit speziellen 3*3-Matrizen möglich.

Metamerie bei Körperfarben kann durch unterschiedliche Beleuchtung bemerkbar werden, da sich in diesem Falle die Remission (der wellenlängenabhängige Remissionsgrad) ändert. Bekannt ist dieser Effekt als Abendfarbe, wenn Jacke und Hose des Anzuges im Kaufhauslicht gleich aussehen, im Tageslicht aber ein Unterschied auffällt. Hose und Jacke wurden aus dem gleichen Stoff aber nicht zeitgleich aus der gleichen Charge gefertigt.

[Bearbeiten] Farbkonstanz

Das Farbensehen entwickelte sich in Anpassung an eine wechselnde, von Tages- und Jahreszeit abhängige Farbqualität der Beleuchtung. Morgens und abends gelangt auf die Erde eher langwelliges (rotes) Licht, mittags eher kurzwelliges (blaues).

Auf Grund des angeborenen Systems der Farbkonstanz wird die Objektfarbe trotz unterschiedlicher Beleuchtung als nahezu unverändert wahrgenommen. Ohne dieses System würde eine rote Kirsche morgens eher weiß und mittags eher schwarz aussehen, eine unreife grüne Kirsche morgens schwarz und mittags weiß.

Ein einfaches Experiment hierzu kann man leicht eingehen, wenn man sich nachts ein vom Grün oder Rot einer Verkehrsampel beleuchtetes Verkehrsverbotsschild ansieht und dabei aufmerksam den roten Ring am runden Rand betrachtet.

In der Fotografie kann man diese Unterschiede durch Aufnahmen mit Kunstlichtfilmen bei Tag oder Tageslichtfilmen bei Kunstlicht nachvollziehen.

[Bearbeiten] Farbwahrnehmung im Tierreich

Tiere haben unterschiedliche Farbwahrnehmungen. Dies hängt auch damit zusammen, dass sich in der Evolutionsgeschichte das Sehen unabhängig voneinander mehrfach entwickelt hat, jeweils unter unterschiedlichen Bedingungen. Diese optischen Wahrnehmungsapparate haben sich zum Teil zu erstaunlich ähnlichen Fähigkeiten hin entwickelt.

Es gibt jedoch Unterschiede insbesondere hinsichtlich der Anzahl verschiedener Rezeptortypen und der Wellenlängen, auf die diese reagieren. Bei den Wirbeltieren verfügen beispielsweise die meisten Säugetiere über zwei verschiedene Rezeptortypen, der Mensch und einige Primaten über drei, die Vögel sowie manche Reptilien und viele Fische über vier.[1]

Die meisten Wahrnehmungsapparate reagieren auf den Wellenlängenbereich des Lichtes, der für den Menschen sichtbar ist, einige jedoch auch auf den ultravioletten oder infraroten Bereich, den der Mensch nicht wahrnehmen kann.

Wie Tiere Farben letztlich wahrnehmen, insbesondere die für den Menschen unsichtbaren, ist eine eher philosophische Frage, auf die es derzeit keine Antwort gibt. Lediglich über die Fähigkeit, bestimmte Farben erkennen und unterscheiden zu können, sind Aussagen möglich.

[Bearbeiten] Untersuchungsmethoden

Der Nachweis von Farbenwahrnehmung im Tierreich setzt die Fähigkeit des Lernens voraus. Es ist deshalb nicht ganz klar, ob das nur schwach entwickelte Farbensehen der nicht-staatenbildenden Insekten, etwa bei Drosophila, eine Folge der Lernschwäche oder eine Schwäche des Sehsystems ist.

Möglich wäre auch, dass komplexe Verrechnung der Farbinformation unabhängig von der Helligkeit für einige Nachttiere in der Evolution keinen Vorteil bot und sich deshalb nicht durchsetzen konnte. Das würde erklären, warum Hauskatzen, die sehr gut lernen und mehrere Zapfentypen besitzen, fast nicht auf Farben zu dressieren sind: zur Jagdzeit bei der Nacht ist für die Katze Grau wichtiger.

Auch bei nachtaktiven Wirbeltieren bleiben immer zusätzlich zu den Stäbchen zwei verschiedene Zapfensysteme erhalten: ein langwelliges und ein kurzwelliges. Dies hat verschiedene Gründe. Stäbchen (für das skotopische Sehen) alleine werden vom Tageslicht geblendet, das entsprechende Tier wäre tagsüber (photopisches Sehen) und in der späten Dämmerung völlig blind. Des Weiteren wird für das Bewegungssehen im Wirbeltiergehirn stets der Zapfen mit dem langwelligsten Absortionsmaximum ausgewertet, ohne Zapfen(system) gibt es kein Bewegungssehen. Ein weiterer Grund ist die Helligkeitskonstanz: Da sich die Wellenlänge von Morgen zu Mittag vom langwelligen in den kurzwelligen Bereich hin verschiebt, würde eine reife (rote) Kirsche mit nur einem Zapfensystem morgens und abends hell, mittags jedoch dunkel wahrgenommen werden. Um eine Helligkeitskonstanz auch bei wechselnden Beleuchtungsbedingungen zu ermöglichen, sind also stets zwei Zapfensysteme notwendig.

[Bearbeiten] Gliederfüßer

  • Bei Insekten wurde das Farbensehen insbesondere bei der Honigbiene untersucht. Karl von Frisch hat gezeigt, dass man Bienen nach ihren Farbempfindungen "fragen" kann, indem man sie auf farbige Plättchen mit Futterbelohnung dressiert. Für den Nachweis echten Farbensehens reicht es dabei nicht aus, dass ein Tier immer wieder auf die einmal als futterträchtig erfahrene Farbe zurückkehrt, denn es könnte ja die Graustufe gelernt haben. Der Sinnesreiz Farbe wird nur dann erkannt, wenn sie unabhängig von der Helligkeit immer wieder gewählt wird. Frisch prüfte dies, indem er den Bienen Farbplättchen verschiedener Helligkeit der belohnten Farbe in Konkurrenz mit anderen Farben zur Auswahl anbot, und feststellte, dass die Farbe bei der Entscheidung Priorität hat.
  • Der Fangschreckenkrebs Neogondodactylus oerstedii besitzt 8 verschiedene Rezeptortypen im sichtbaren und vier im UV-Bereich [6]

[Bearbeiten] Wirbeltiere

Niedere Wirbeltiere und unter den Säugetieren die Beuteltiere verfügen meist über vier Zapfentypen, sie werden daher Tetrachromaten genannt. Neben den L-, M- und S-Zapfen verfügen sie über einen UV-Zapfen, der im Bereich von weniger als 380 nm absorbiert. Da man dieses – im Vergleich zum Menschen komplexere – tetrachromatische Farbsystem bei Beuteltieren, Vögeln und Fischen findet, geht man davon aus, dass es den ursprünglichen Typus des Wirbeltier-Sehsystems darstellt.

[Bearbeiten] Knochenfische

In Anpassung an die unterschiedlichen Beleuchtungsverhältnisse ihrer Lebensräume haben die verschiedenen Arten der Knochenfische unterschiedliche Systeme ausgebildet. Die meisten bisher darauf untersuchten Fische sind Tetrachromaten. Die Zahl der Zapfen und deren Absorptionsmaxima hängt dabei von ihrer Lebensweise ab: Mit zunehmender Tiefe in Gewässern ist auf Grund der stärkeren Absorption von lang- und kurzwelligem Licht die Beleuchtung zunehmend einfarbiger (monochromatisch). In klaren Meeren oder Seen erreicht der blaue Anteil des Lichtes Tiefen von über 60 Metern. In Süßwasserseen mit einer hohen Planktondichte herrscht in Tiefen von 25 Metern gelbgrünes Licht vor, in Schwarzwasserflüssen und Moorseen erreicht der Rotanteil des Lichtes höchstens eine Tiefe von 3 Metern. Gleichzeitig nimmt bei allen Gewässern die Intensität des Lichtes ab. So besitzen dämmerungsaktive oder in dunklen Regionen lebende Fische vorwiegend im roten absorbierende Zapfen, während tagaktive, in den oberen, lichtdurchfluteten Regionen lebende Fische mehr Blau- und Grünzapfen aufweisen.

  • Stäbchenmonochromaten besitzen keine Zapfen, sie können nur bei sehr geringen Lichtintensitäten und nur Graustufen sehen. Das hellste Grau liefern Objekte in Grüntönen.
  • Dichromaten haben zusätzlich zwei verschiedene Zapfentypen. Beispiel: Gemeine Goldmakrele (Coryphaena hippurus).
  • Trichromaten besitzen ähnlich wie der Mensch drei Zapfentypen. Beispiel: Buntbarsch (Cichlasoma longinasus)

Ob Di- und Trichromaten auch unterschiedliche Farben wahrnehmen und unterscheiden können, hängt von der weiteren neuronalen Verarbeitung in Netzhaut und Gehirn ab.[5]

[Bearbeiten] Vögel

Hühner besitzen neben dem Rhodopsin der Stäbchen vier Zapfenpigmente für Rot (Absorptionsmaximum bei ca. 570 nm), Grün (ca. 510 nm), Blau (ca. 450 nm) und Violett (ca. 420 nm). Zusätzlich befindet sich im Pinealorgan (Zirbeldrüse/Epiphyse) ein weiteres Pigment, das Pinopsin (ca. 460 nm). [7]

Vögel und ebenso die Reptilien haben in ihren Zapfen mit Carotinoiden gefärbte und farblose Öltröpfchen, die wie ein Farbfilter funktionieren. Diese Filter engen die Absorptionsspektren der Zapfentypen ein und verbessern damit die Unterscheidbarkeit verschiedener Farben. Säugetiere sowie Menschen besitzen diese Farbfilter nicht.

[Bearbeiten] Säuger

  • Mäuse haben neben dem Stäbchenpigment Rhodopsin nur zwei Zapfenpigmente für Grün (Absorptionsmaximum ca. 510 nm) und Blau (ca. 350 nm) [7]
  • Primaten können im Allgemeinen Farben sehen. Wie Untersuchungen an Affen am japanischen Nationalen Forschungsinstitut in Tsukuba ergaben (in "Current Biology" Bd.14, S. 1267, 2004), ist die Fähigkeit, Farbe unabhängig von der Helligkeit wahrzunehmen, nicht angeboren. Dies stellte man bei Affen fest, die in monochromatischem Licht aufgewachsen waren. Sie konnten ein farbiges Objekt immer dann nicht wiedererkennen, wenn dies bei abweichenden Beleuchtungsverhältnissen Licht unterschiedlicher Wellenlänge reflektierte (hierzu siehe auch den Abschnitt "Farbsehen" unter Evolutionsphysiologie).

[Bearbeiten] UV-Wahrnehmung im Tierreich

Viele Insekten, Vögel, Eidechsen, Schildkröten und Fische haben UV-Rezeptoren in ihrer Netzhaut. [1]

[Bearbeiten] Geschichte der Erforschung des UV-Sehens

[Bearbeiten] Tetrachromasie

Farbtetraeder für die Schildkröte (Pseudomys scripta elegans). W = Weißpunkt; die Zahlenangaben sind Wellenlängen in Nanometern
Farbtetraeder für die Schildkröte (Pseudomys scripta elegans). W = Weißpunkt; die Zahlenangaben sind Wellenlängen in Nanometern

Auf Grund des vierten Zapfentyps, der im UV-Bereich des Lichtes sein Absorptionsmaximum hat, können tetrachromatische Tiere wie einige Insekten, nahezu alle Fische (Goldfisch), Reptilien, die Ursäuger Australiens und Vögel mehr Farben unterscheiden als der Mensch. Untersuchungen am Wellensittich (Melapsittacus undulatus) ergaben, dass der Vogel nicht nur die Farben, die auch der Mensch unterscheidet, wahrnehmen kann, sondern darüber hinaus auch Mischungen mit unterschiedlichem UV-Anteil. So unterscheidet ein Vogel je nach UV-Anteil zum Beispiel bei einem bestimmten Blau verschiedene Farben, wo der Mensch nur eine einzige wahrnehmen kann.

Aus der Anzahl der Zapfentypen kann jedoch nicht unmittelbar geschlossen werden, dass Tiere auch die entsprechende Anzahl von Farben unterscheiden können. Dies hängt von der Weiterverarbeitung der Farbinformation in Netzhaut und Gehirn ab und kann erst durch Verhaltensexperimente untersucht werden.

[Bearbeiten] Bedeutung der Tetrachromasie

  • Die Fähigkeit, UV-Licht wahrnehmen zu können, spielt für einige Vögel bei der Balz eine Rolle
    • Messungen der UV-Reflexion ergaben, dass von 139 Arten, bei denen sich Männchen und Weibchen für das menschliche Auge nicht unterscheiden lassen, sich bei mehr als 90 % der Arten die Geschlechter im UV-Muster unterscheiden.[8]
    • Bei Männchen 108 australischer Vogelarten reflektieren diejenigen Stellen des Gefieders, die bei der Balz eine Rolle spielen, mehr UV-Licht als andere Gefiederareale. [9]
    • Bei der Blaumeise (Parus caeruleus) wählen die Weibchen bevorzugt diejenigen Männchen, die am meisten UV-Licht reflektieren. Da die Reflexion des UV-Lichtes von der Mikrostruktur der Federn abhängt, kann sie Auskunft über die Gesundheit der Männchen geben.
    • Beim Azurbischof (Guiraca caerulea) besetzen die Männchen mit der höchsten UV-Reflexion die größten und ertragreichsten Reviere und füttern ihre Jungen am häufigsten.[10]

Aber auch beim Nahrungserwerb spielt die Wahrnehmung von UV-Licht eine Rolle.

  • Die Oberfläche von vielen Früchten reflektiert UV-Licht. Dadurch ist es für Tiere mit dem Vermögen, UV-Licht wahrzunehmen, leichter, diese aufzufinden.[11]
  • Kleine Falken (Falco tinnunculus) entdecken die Spur ihrer Beute (Wühlmaus Microtus agrestis) anhand deren Markierungen, da Urin und Kot UV-Licht reflektieren.[12]

[Bearbeiten] UV-Wahrnehmung beim Menschen

Das Rhodopsin der Stäbchen hat zwei Absorptionsmaxima: im sichtbaren Bereich bei 500 nm (türkis) und im UV-Bereich bei 350 nm. Beim gesunden menschlichen Auge ist eine Wahrnehmung von UV-Licht auf Grund der Absorption durch die Augenlinse nicht möglich, dies ist auch Schutzfunktion für die Netzhaut, die durch die energiereiche UV-Strahlung geschädigt würde.

Menschen, denen die Linse entfernt wurde (Grauer Star) können UV-Licht wahrnehmen. [13] Die Zäpfchen werden geschädigt und nehmen keinen unterschiedlichen Farbreiz wahr. Die spektrale Empfindlichkeit am kurzwelligen Ende wird zu kürzeren Wellenlängen verschoben, ohne dass die Intensität der Wahrnehmung steigt.

[Bearbeiten] Evolution der Zapfentypen

Schema zur Evolution der Zapfentypen bei Wirbeltieren
Schema zur Evolution der Zapfentypen bei Wirbeltieren

Heute lebende (rezente) Vögel besitzen vier Zapfentypen, deren Absorptionsmaxima bei 370 nm (UV-Typ), 445 nm (S-Typ), 508 nm (M-Typ) und 565 nm (L-Typ) liegen. Auf Grund von Vergleichen der DNA-Sequenzen verschiedener Opsin-Typen bei verschiedenen rezenten Tieren nimmt man an, dass auch die gemeinsamen Vorfahren der Vögel und Säuger vier Zapfentypen besaßen. In einer frühen Phase der Säugerevolution gingen die mittleren S- und M-Typen verloren. Es wird angenommen, dass diese Tiere nachtaktiv waren und deswegen diese Veränderung im Sehsystem tolerieren konnten. Vor ungefähr 40 Millionen Jahren entstand mit dem Übergang zur Tagaktivität bei den Vorfahren der Primaten der Alten Welt durch Genduplikation ein dritter Zapfentyp, so dass wieder ein M-Typ (530 nm) zur Verfügung stand, dessen Absorptionsmaximum sich aber nur wenig vom L-Typ (560 nm) unterscheidet. Ein selektiver Vorteil bestand möglicherweise darin, dass sich mit drei Zapfentypen Früchte als Nahrungsquelle besser unterscheiden lassen als mit zwei. [1]

[Bearbeiten] Genetik

Wie noch heute bei einigen Affenarten, waren vermutlich auch bei uns zunächst v. a. die Frauen Trichromaten, da die Langwellenzapfen auf dem geschlechtsspezifischen X-Chromosom codiert sind. Dieses ist bei Frauen zweimal, bei Männern aber nur einmal vorhanden. Dadurch ist die Rot-Grün-Blindheit bei Männern häufiger als bei Frauen: wenn nämlich ein X-Chromosom an der entsprechenden Stelle beschädigt ist, kann bei Frauen das andere einspringen, bei Männern gibt es diese Möglichkeit nicht.

[Bearbeiten] Defekte bei der Farbwahrnehmung

Farbfehlsichtigkeit tritt in verschiedenen Formen auf:

  • Rotblinde ohne Rotrezeptoren werden als Protanope (gr. protos, erster; gr. an-, nicht; gr. ope Blick) bezeichnet
  • Grünblinde als Deuteranope (gr. deuteros, zweiter), sie weisen beide das Phänomen der Dichromasie auf, besitzen also nur zwei statt drei Zapfentypen.
  • Rotschwäche (Protanopie) und Grünschwäche (Deuteranopie) beruhen auf veränderten Empfindlichkeiten der entsprechenden Rezeptoren.

Diese Fehlsichtigkeiten treten bei Veränderungen der Opsin-Gene auf. Aber auch Linsenverfärbungen (Vergilbungen) können die Farbwahrnehmung beeinträchtigen.

[Bearbeiten] Geschichte der Erforschung

  • Isaac Newton entdeckt, dass Licht aus verschiedenen Farbanteilen zusammengesetzt ist und beschreibt das Phänomen der Metamerie (unterschiedlich zusammengesetztes Licht kann den selben Farbeindruck hervorrufen). Er prägt den Satz "The rays are not coloured" (Die Lichtstrahlen sind nicht farbig).
  • 1794: John Dalton berichtet über seine Farbfehlsichtigkeit. Er sah Rot nur als undeutlichen Schatten, Orange, Gelb und Grün nahm er nur als verschiedene Abstufungen von Gelb wahr (deshalb wurde die Rot-Grün-Blindheit auch als „Daltonismus“ bezeichnet.)
  • 1802: Thomas Young vermutet, dass die Möglichkeit, alle Farben aus drei Primärfarben zusammenzusetzen, auf physiologischen Vorgängen in der Netzhaut beruht und postuliert drei Rezeptortypen, die zu den Primärfarben passen.
  • James Clerk Maxwell identifiziert zwei Typen des „Daltonismus“ und erklärt sie mit Hilfe seiner Drei-Rezeptoren-Theorie.
  • John William Strutt entwickelt das Anomaloskop, mit dem die Farbtüchtigkeit getestet wird. Bei Untersuchungen entdeckt er die Rot- und die Grünschwäche.
  • Mitte der 1960er Jahre entwickeln zwei Forschergruppen um Paul K. Brown und Edward McMichael jr. Mikrospektralphotometer, mit deren Hilfe die Absorption einzelner Zapfen gemessen werden kann.

Quellen zum Kapitel:[2]

[Bearbeiten] Kulturgeschichte

Zwar sind die neuronalen Wege und Mechanismen der Verarbeitung von Farbinformationen beim Menschen im Prinzip bekannt, wie aber das Gehirn die Aktivität der Neuronen in ein mentales Bild „übersetzt“, also letztlich der Prozess des Bewusstwerdens von Farbe, ist nicht bekannt.

Hinweise, dass auf dieser Stufe der Wahrnehmung kulturelle und damit durch Lernprozesse beeinflusste Unterschiede bestehen, gibt die Benennung von Farben und die Einteilung des Farbspektrums in Farbgruppen.

[Bearbeiten] Farbnamen und Farbsystem

  • Empedokles fasst Weiß und Schwarz als Farben auf.
  • Aristoteles setzt in seinem Werk De sensu („Über die Sinne“) die Helligkeit der Luft der Farbe Weiß von Körpern gleich, Dunkelheit entspricht der Farbe Schwarz. Die Farben setzen sich aus unterschiedlichen Mischungen von Weiß und Schwarz zusammen.

Nach diesen Vorstellungen wurden die Farben bis ins 17. Jahrhundert nach einer Helligkeitsskala angeordnet: Weiß – Gelb – Rot – Blau – Schwarz. Während heutzutage eine Farbe durch Farbton, Sättigung und Helligkeit definiert ist, sah man den Farbton bis dahin nur als Folge von Helligkeit an.

Diese Sichtweise spiegelt sich auch in der Etymologie der Farbnamen wider: So gehen die Begriffe Weiß und Gelb auf eine gemeinsame indogermanische sprachliche Wurzel mit der Bedeutung ›hell, blank, glänzend‹ (fr: blanc, it: bianca =Weiß) zurück.

Siehe auch [14]

[Bearbeiten] Farbkategorien

Im europäischen Kulturkreis werden die vielen unterschiedlichen Farbnuancen einigen wenigen Farbkategorien zugeordnet: Violett, Blau, Grün, Gelb, Orange, Rot, Rosa, Braun. Untersuchungen ergaben, dass die Berimos auf Papua-Neuguinea nur fünf Kategorien verwendeten (s. hierzu auch Prototypensemantik). So ordnen sie einen weiten Bereich an Farbnuancen, der von Europäern in die beiden Kategorien Grün und Blau eingeteilt wird, nur einem Begriff zu.[15]

Siehe auch [16]

Baum und Gras ist grün - dies hier ist aber nicht Natur, sondern ein generiertes Bild auf einem technischen Gerät, bei dem die aufgenommen Wellenlängen geändert, aber der Farbeindruck dennoch ähnlich ist.
Baum und Gras ist grün - dies hier ist aber nicht Natur, sondern ein generiertes Bild auf einem technischen Gerät, bei dem die aufgenommen Wellenlängen geändert, aber der Farbeindruck dennoch ähnlich ist.

[Bearbeiten] Die Illusion einer farbigen Welt

Sobald man das Bewusstsein des Menschen und die höhere Nerventätigkeit in Gegensatz zu ihrer materiellen Basis, also dem Gehirn, und der objektiven Umwelt setzt, wird Farbe zu einem eigenständigen Objekt, das so in der Umgebung nicht existiert.

Eckart Voland spricht von der Illusion einer farbigen Welt und schreibt: Die Farben sind vom Gehirn generierte Erlebnisqualitäten bloßer elektromagnetischer Strahlung in einer absolut farblosen Welt.[17] Auch der Hirnforscher Gerhard Roth vertritt die Auffassung, dass die erlebte ›Wirklichkeit‹ unserer Welt (einschl. Farben und Musik) nur die durch unser Gehirn interpretierte Realität ist.[18] Mit dem Zustandekommen des qualitativen Charakters der Farbwahrnehmung (Qualia) beschäftigen sich die Philosophie des Geistes und die Neurowissenschaften.

Anzumerken ist: Es gibt elektromagnetische Wellen unterschiedlicher Wellenlänge und damit unterschiedlichen Energieinhalts. Diese können als Farbreiz im Auge mit unterschiedlichen Sinneszellen, die für unterschiedliche Wellenlängenbereiche empfindlich sind, in Interaktion treten. Dadurch wird ursächlich in diesen Sinneszellen des Auges, in der Nervenbahn und im Zentralnervensystem diese Farbvalenz wahrgenommen. Das ist das objektiv feststellbare Ereignis. In einer langen Entwicklung ist auf diese Weise ein System für die visuelle Betrachtung der Umwelt entstanden. Die Wahrnehmung von Farben erlaubt auch die Orientierung und Bewegung in der Welt, um Gefahren oder Annehmlichkeiten zu erkennen.

Die Umwelt trägt in den Lichtstrahlen eine Information. Das, was wir als Farbe bezeichnen, ist eine Übersetzung dieser Information durch das Nervensystem.

[Bearbeiten] Belege und Quellen

  1. a b c d e Timothy H. Goldsmith, Vögel sehen die Welt bunter, in Spektrum der Wissenschaft, Januar 2007, S. 96-103; → Spektrum und (PDF)
  2. a b Jeremy Nathans, Die Gene für das Farbensehen, in Spektrum der Wissenschaft, April 1989, S. 68 ff.
  3. Bowmaker & Mollon (1983): Human rods and cones, Wertetabelle bei Colour and Vision Research Labs
  4. Bowmaker et al, (1978): Rhesus monkey rods, Wertetabelle bei Colour and Vision Research Labs
  5. a b Palacios A.G.; Varela F.J.; Srivastava R.; Goldsmith T.H.1, Vision Research, Volume 38, Number 14, July 1998, pp. 2135-2146(12)
  6. Die bunte Welt der Krebse. In Spektrum der Wissenschaft, Januar 2000, S. 13.→ [1]
  7. a b Jeremy M. Berg u.a.: Biochemie, Spektrum akademischer Verlag Heidelberg, 5. Auflage 2003, S. 1002. ISBN 3-8274-1303-6
  8. Muir D. Eaton: Human vision fails to distinguish widespread sexual dichromatism among sexually “monochromatic” birds. In: Proc Natl Acad Sci U S A. 2005 August 2; 102(31): 10942–10946. → [2]
  9. F.Hausmann: The evolutionary significance of ultraviolet reflectance and florescence in birds. Honours Thesis. (1997)
    F.Hausmann u.a.:. UV signals in birds are special. In Proc. R. Soc. Lond. B. 2002 → [3]
  10. Lynn Siefferman, Geoffrey Hill (Department of Biological Sciences, Auburn University, Auburn). In Journal of the Alabama Academy of Science; April 1, 2001; → [4]
  11. Dietrich Burkhardt. In Die Naturwissenschaften, (April 1982) Vol. 69, No. 4, S. 153
  12. Jussi Viitala u.a. In Nature 373, 425 - 427 (02 February 1995) → [5]
  13. G. Wald: Alleged effects of the near ultraviolet on human vision. In: J.Opt.Soc.Amer. 42, 171-177
  14. Georges Roque: Licht und Farbe. In Spektrum der Wissenschaft – Spezial 2004, Heft 5:Farbe, S.10 ff.
  15. Jules Davidoff, Debi Roberson. In Nature, Band 398, S. 203ff, 18. März 1999 →nature (PDF)
  16. Loic Mangin: Die Farben der Papuaner. In Spektrum der Wissenschaft – Spezial 2004. Heft 5: Farbe, S. 90 ff.
  17. Eckart Voland: Die Fortschrittsillusion. In: Spektrum der Wissenschaft 4/07 vom April 2007 [6] und wissenschaft online
  18. Gerhard Roth: Das Gehirn und seine Wirklichkeit. Kognitive Neurobiologie und ihre philosophischen Konsequenzen. Suhrkamp, Frankfurt (8. Aufl. 2000) stw 1275 ebd. auch 1997 ISBN 351828875X

[Bearbeiten] Siehe auch

[Bearbeiten] Weblinks


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -