See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Cauchysches Verdichtungskriterium – Wikipedia

Cauchysches Verdichtungskriterium

aus Wikipedia, der freien Enzyklopädie

Das cauchysche Verdichtungskriterium (nach Augustin Louis Cauchy) ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung, ob eine unendliche Reihe konvergent oder divergent ist.

[Bearbeiten] Formulierung

Sei eine unendliche Reihe

S = \sum_{n=0}^\infty a_n

mit positiven reellen Summanden an gegeben, welche eine monoton fallende Folge bilden.

Dann hat S das gleiche Konvergenzverhalten wie die Reihe

T = \sum_{k=0}^\infty 2^ka_{2^k}.

[Bearbeiten] Beweisskizze

Die Wirkungsweise dieses Kriteriums kann als Betrachtung von Ober- und Untersummen der zu untersuchenden Reihe gedacht werden. Die Folge (a_n)_{n\in\N} wird in Blöcke aufsteigender Länge aufgeteilt und in jedem Block gegen Maximum und Minimum abgeschätzt. Da die Folge (a_n)_{n\in\N} als monoton fallend vorausgesetzt wurde, ist das Maximum mit dem ersten und das Minimum mit dem letzten Folgenglied eines jeden Blockes identisch.

Das Kriterium ergibt sich nun aus dem Majorantenkriterium. Die gängigste Blockaufteilung ist die nach Zweierpotenzen mit Blöcken a_{2^k}, a_{2^k+1},\dots,a_{2^{k+1}-1}. Um Konvergenz nachzuweisen, konstruiert man die Majorante (b_n)_{n\in\N} durch

b_{2^k+m}:=a_{2^k}\ge a_{2^k+m} für 0≤m<2k.

Zu jedem Index k enthält die Majorante 2k Glieder mit demselben Wert a_{2^k}, die Majorante konvergiert also genau dann, wenn T = \sum_{k=0}^\infty 2^ka_{2^k} konvergiert.

Um Divergenz nachzuweisen, konstruiert man die Minorante (b_n)_{n\in\N} durch

b_{2^k+m}:=a_{2^{k+1}}\le a_{2^{k+1}-1}\le  a_{2^k+m} für 0≤m<2k.

Zu jedem Index k enthält die Minorante 2k Glieder mit demselben Wert a_{2^{k+1}}, die Minorante divergiert also genau dann, wenn \frac12(T-a_0) = \sum_{k=0}^\infty 2^ka_{2^{k+1}} divergiert.

[Bearbeiten] Anwendung

Eine Anwendung liegt bei den allgemeinen harmonischen Reihen. Für ein fixiertes α > 0 hat

S_n = \sum_{k=1}^n \frac1{k^\alpha}

das gleiche Konvergenzverhalten wie

T_n = \sum_{k=0}^n 2^k\frac1{(2^k)^\alpha}=\sum_{k=0}^n (2^{1-\alpha})^k.

Tn ist ersichtlich eine geometrische Reihe mit Faktor q = 21 − α. Aus deren Konvergenzverhalten folgt, dass für α > 1 Konvergenz, sonst Divergenz, vorliegt.

Andere Sprachen


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -