We provide Linux to the World

ON AMAZON:



https://www.amazon.com/Voice-Desert-Valerio-Stefano-ebook/dp/B0CJLZ2QY5/



https://www.amazon.it/dp/B0CT9YL557

We support WINRAR [What is this] - [Download .exe file(s) for Windows]

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
SITEMAP
Audiobooks by Valerio Di Stefano: Single Download - Complete Download [TAR] [WIM] [ZIP] [RAR] - Alphabetical Download  [TAR] [WIM] [ZIP] [RAR] - Download Instructions

Make a donation: IBAN: IT36M0708677020000000008016 - BIC/SWIFT:  ICRAITRRU60 - VALERIO DI STEFANO or
Privacy Policy Cookie Policy Terms and Conditions
Archimedisches Prinzip – Wikipedia

Archimedisches Prinzip

aus Wikipedia, der freien Enzyklopädie

Das Archimedische Prinzip wurde vor über 2000 Jahren vom altgriechischen Gelehrten Archimedes entdeckt. Es lautet:

Die Auftriebskraft eines Körpers in einem Medium ist genau so groß wie die Gewichtskraft des vom Körper verdrängten Mediums.

Es hat den Anschein, dass ein Gegenstand in Wasser leichter ist. Die Masse des Körpers bleibt jedoch unverändert. Dieser Eindruck entsteht, da die resultierende Kraft um die Auftriebskraft, die der Gewichtskraft entgegenwirkt, verringert wird.

Bild 1: Schematisierter Auftrieb
Bild 1: Schematisierter Auftrieb

Das Archimedische Prinzip gilt in allen Fluiden, d. h. in Flüssigkeiten und Gasen. Schiffe verdrängen Wasser und erhalten dadurch Auftrieb. Da die Dichte eines Schiffes geringer ist als die Dichte von Wasser, schwimmt es auf der Oberfläche. Auch Ballone und Luftschiffe machen sich diese Eigenschaft zu Nutze, um fahren zu können. Hierbei werden sie mit einem Gas gefüllt, dessen Dichte geringer ist als die der umgebenden Luft. Diese Gase sind bei Luftschiffen und vielen Ballonen von Natur aus weniger dicht als Luft (z. B. Wasserstoff oder Helium); in Heißluftballons wird die Luftfüllung mit Hilfe von Gasbrennern erwärmt, wodurch ihre Dichte abnimmt.

Inhaltsverzeichnis

[Bearbeiten] Erklärung des Phänomens

Bild 2: Die Kraft (b) an der Unterseite (der Druck im Wasser) ist größer, als die Kraft (a) an der Oberseite. Die seitlichen Kräfte (c und d) sind für den Auftrieb ohne Bedeutung
Bild 2: Die Kraft (b) an der Unterseite (der Druck im Wasser) ist größer, als die Kraft (a) an der Oberseite. Die seitlichen Kräfte (c und d) sind für den Auftrieb ohne Bedeutung
Bild 3: Die Kraft, die auf einen Punkt wirkt (in Flüssigkeiten oder Gasen) ist in alle Richtungen gleichgroß
Bild 3: Die Kraft, die auf einen Punkt wirkt (in Flüssigkeiten oder Gasen) ist in alle Richtungen gleichgroß

Ursache für die Auftriebskraft ist der Druckunterschied zwischen der Ober- und der Unterseite eines eingetauchten Körpers. Die Kräfte, die auf die Seitenflächen einwirken, spielen keine Rolle, da sie sich gegenseitig stets aufheben. Das heißt, es wirkt auf die unteren Teile der Oberfläche eines eingetauchten Körpers eine größere Kraft als auf die oberen Teile der Oberfläche. Es herrscht folglich ein Druckunterschied. Da jedes physikalische System stets bestrebt ist, einen Druckausgleich zu erzielen, wird sich der Körper so lange aufwärts bewegen, bis sich alle auf ihn einwirkenden Kräfte ausgleichen.

Im Beispiel (Bild 1) gehen wir von einem Würfel mit 20 cm Kantenlänge aus. Er ist 10 cm tief unter die Wasseroberfläche eingetaucht.

[Bearbeiten] Herleitung „klassisch“

1~{\rm Pa} = 1~\frac{\rm N}{{\rm m}^2}

Auf die untere Fläche Aunten wirkt die Kraft

F_{\rm unten} = 2943~\frac{\rm N}{{\rm m}^2} \cdot 0{,}04~{\rm m}^2 = \underline{117{,}72~{\rm N}}

auf die obere Fläche Aoben wirkt dagegen die Kraft F_{\rm oben} = 981~\frac{\rm N}{{\rm m}^2} \cdot 0{,}04~{\rm m}^2 = \underline{39{,}24~{\rm N}}.

Die Differenz der beiden Kräfte beträgt 78,48 N. Also ist der Auftrieb dieses Körpers 78,48 Newton.

[Bearbeiten] Herleitung nach Archimedes

Nach Archimedes gilt Folgendes: F_{\rm Auftrieb}=F_{{\rm Gewicht}_{\rm Fluid}}. Bezogen auf das Beispiel können wir schreiben:

\begin{matrix} F_{\rm Auftrieb} &=& V_{\rm verdr\ddot{a}ngt} \cdot \rho_{\rm Fluid}\cdot g \\
 \ &=& 8000~{\rm cm}^3 \cdot 1 \frac{g}{{\rm cm}^3}\cdot9{,}81\cdot10^{-3}\frac{\rm N}{g} \\ \ &=& 78{,}48~{\rm N}\end{matrix}

Wir sehen, dass beide Methoden zum selben Ergebnis führen.

[Bearbeiten] Gedankenexperiment

Folgendes Gedankenexperiment veranschaulicht die Richtigkeit des Archimedischen Prinzips. Dazu stelle man sich ein ruhendes Fluid vor. Innerhalb des Fluids sei ein beliebiger Teil des Fluids markiert. Die Markierung kann man sich wie eine Art Wasserballon in einem Behälter Wasser vorstellen, nur dass die Haut dieses Wasserballons unendlich dünn und massenlos ist und eine beliebige Form annehmen kann.

Man stellt nun fest, dass der so markierte Teil des Fluids innerhalb des Fluids weder steigt noch sinkt, da sich das gesamte Fluid in Ruhe befindet – der markierte Teil schwebt sozusagen schwerelos im ihn umgebenden Fluid. Das bedeutet, dass die Auftriebskraft des markierten Fluidteils exakt sein Gewicht kompensiert. Daraus kann gefolgert werden, dass die Auftriebskraft des markierten Fluidteils genau seiner Gewichtskraft entspricht. Da die Markierung innerhalb des Fluids beliebig ist, ist somit die Richtigkeit des archimedischen Prinzips für homogene Fluide gezeigt.

[Bearbeiten] Steigen, Sinken, Schweben

Damit der Körper die in der Grafik beschriebene Position einnimmt, muss seine Gewichtskraft gleich der Gewichtskraft des verdrängten Wassers (78,48 N) sein. Dann heben sich alle auf den Körper wirkenden Kräfte auf und dieser kommt zum Stillstand. Nach der Formel m=F_{\rm Gewicht}\cdot g^{-1} muss der Körper 8.000 g schwer sein. Des Weiteren hätte er nach  \rho = \frac{m}{V} eine Dichte von 1. (Wasser hat ebenfalls eine Dichte von 1,0 kg/dm³)
Wir können also folgende Regel formulieren:

  • Wenn \rho_{\rm K\ddot{o}rper}=\rho_{\rm Fluid} ist, dann schwebt der Körper.
  • Wenn \rho_{\rm K\ddot{o}rper}<\rho_{\rm Fluid} ist, dann steigt der Körper.
  • Wenn \rho_{\rm K\ddot{o}rper}>\rho_{\rm Fluid} ist, dann sinkt der Körper.

Die Körper steigen oder sinken, bis der Gewichtskraft eine betragsmäßig gleich große Kraft entgegenwirkt. Dies kann beim Sinken eine sich ändernde Dichte des Fluids oder auch der Boden des Bechers bewirken. Ein Körper steigt oft so lange, bis er die Oberfläche durchbricht. In diesem Fall gilt: V_{\rm eingetaucht} \cdot \rho_{\rm Fluid} = V_{\rm K\ddot{o}rper} \cdot \rho_{\rm K\ddot{o}rper}.

[Bearbeiten] Die Entdeckung des Archimedischen Prinzips

Experiment zum Beweis des archimedischen Prinzips, Illustration von 1547
Experiment zum Beweis des archimedischen Prinzips, Illustration von 1547

Archimedes war von König Hieron II. von Syrakus beauftragt worden, herauszufinden, ob dessen Krone wie bestellt aus reinem Gold wäre oder ob das Material durch billigeres Metall gestreckt worden sei. Diese Aufgabe stellte Archimedes zunächst vor Probleme, da die Krone natürlich nicht zerstört werden durfte.

Der Überlieferung nach hatte Archimedes schließlich den rettenden Einfall, als er zum Baden in eine bis zum Rand gefüllte Wanne stieg und dabei das Wasser überlief. Er erkannte, dass die Menge Wasser, die übergelaufen war, genau seinem Körpervolumen entsprach. Angeblich lief er dann, nackt wie er war, durch die Straßen und rief Heureka („Ich habe es gefunden“).

Um die gestellte Aufgabe zu lösen, tauchte er einmal die Krone und dann einen Goldbarren, der genauso viel wog wie die Krone, in einen vollen Wasserbehälter und maß die Menge des überlaufenden Wassers. Da die Krone mehr Wasser verdrängte als der Goldbarren und somit bei gleichem Gewicht voluminöser war, musste sie aus einem leichteren Material, also nicht aus reinem Gold, gefertigt worden sein.

Diese Geschichte wurde vom römischen Architekten Vitruv überliefert.

Obwohl der Legende nach auf dieser Geschichte die Entdeckung des Archimedischen Prinzips beruht, würde der Versuch von Archimedes auch mit jeder anderen Flüssigkeit funktionieren. Das Interessanteste am Archimedischen Prinzip, nämlich die Entstehung des Auftriebs und damit die Berechnung der Dichte des Fluids, spielt in dieser Entdeckungsgeschichte gar keine Rolle.

[Bearbeiten] Physikalische Herleitung

Wirkt auf eine Fläche \vec{A} (mit Flächeninhalt |\vec{A}| und Normalenvektor \vec{A}/|\vec{A}|) von einer Seite ein konstanter Druck pA, so ist der nach unten (bzw. nach oben, bei negativem Vorzeichen) wirkende Kraftanteil


F_A = - (\vec{e}_z \cdot \vec{A}) p_A

wobei \vec{e}_z ein nach unten zeigender Einheitsvektor ist.

Das Archimedische Prinzip gilt nur genau dann streng, wenn das verdrängte Medium inkompressibel (nicht zusammendrückbar) ist. Außerdem ist die Abhängigkeit der Dichte von der Temperatur zu berücksichtigen. Für Flüssigkeiten wie z. B. Wasser ist dies gut erfüllt, daher soll im Folgenden von einem Körper ausgegangen werden, der in eine Flüssigkeit der Dichte ρ eintaucht.

In der Flüssigkeit lastet auf einer waagerechten Fläche der Größe A in der Tiefe z das Gewicht einer Flüssigkeitssäule der Masse m=\rho \cdot A \cdot z. Der Druck in dieser Tiefe ist deshalb:


p(z) = \frac{m \cdot g}{A} = \rho \cdot g \cdot z

Ein entsprechender Druckverlauf gilt bei nicht zu großen Höhendifferenzen z auch in der Luft oder anderen Gasen (d. h. die Kompressibilität fällt nicht ins Gewicht; bei großen Höhenunterschieden müsste eine veränderliche Dichte berücksichtigt werden). Deshalb gelten die folgenden Überlegungen auch für realistisch große Luftschiffe oder Ballone.

Für einfache geometrische Formen kann man die Gültigkeit des Archimedischen Prinzips mit einfachen Mitteln von Hand nachrechnen. Für einen Quader mit Grundfläche A und Höhe h, der senkrecht in die Flüssigkeit eintaucht, erhält man beispielsweise:

  • Kraft auf die obere Grundfläche:

F_o = p(z_0) \cdot A = \rho \cdot g \cdot z_0 \cdot A

  • Kraft auf die untere Grundfläche:

F_u = p(z_0+h) \cdot A = -\rho \cdot g \cdot (z_0+h) \cdot A

  • Kräfte auf die Seitenflächen heben sich stets gegenseitig auf
  • Die gesamte Auftriebskraft ist also

F = F_o + F_u = -\rho \cdot A \cdot h \cdot g = -\rho \cdot V \cdot g.

Dabei ist V das verdrängte Volumen, also \rho \cdot V die verdrängte Masse und \rho \cdot V \cdot g ihre Gewichtskraft. Das Archimedische Prinzip ist also erfüllt. Das negative Vorzeichen zeigt an, dass die Auftriebskraft der Gewichtskraft entgegengesetzt ist.

Für einen beliebig geformten Körper erhält man die gesamte Auftriebskraft durch das Oberflächenintegral:


F = - \iint_{\partial V}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\;\subset\!\supset \;\;p(z) \; \vec{e}_z \cdot \mathrm d\vec{A}

Das Archimedische Prinzip folgt dann sofort aus dem Gauß'schen Integralsatz:


F = - \iiint_V \operatorname{div} \; p(z) \vec{e}_z \;\mathrm dV= -g \cdot \rho \cdot \iiint_V \mathrm dV = -g \cdot \rho \cdot V

[Bearbeiten] Weblinks

Static Wikipedia 2008 (March - no images)

aa - ab - als - am - an - ang - ar - arc - as - bar - bat_smg - bi - bug - bxr - cho - co - cr - csb - cv - cy - eo - es - et - eu - fa - ff - fi - fiu_vro - fj - fo - frp - fur - fy - ga - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - jbo - jv - ka - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mg - mh - mi - mk - ml - mn - mo - mr - ms - mt - mus - my - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nn - -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -
https://www.classicistranieri.it - https://www.ebooksgratis.com - https://www.gutenbergaustralia.com - https://www.englishwikipedia.com - https://www.wikipediazim.com - https://www.wikisourcezim.com - https://www.projectgutenberg.net - https://www.projectgutenberg.es - https://www.radioascolto.com - https://www.debitoformativo.it - https://www.wikipediaforschools.org - https://www.projectgutenbergzim.com