Linie spektralne
Z Wikipedii
Linia spektralna jest ciemną lub jasną linią w jednolitym, ciągłym widmie, powstającą wskutek nadmiaru lub deficytu fotonów (w porównaniu z pobliskimi częstotliwościami) w wąskim zakresie częstotliwości.
Linie spektralne są wynikiem oddziaływania pomiędzy układem kwantowym (zazwyczaj atomy, ale czasami też molekuły i jądra atomowe) i pojedynczymi fotonami. Kiedy foton ma dokładnie taką energię, by zmienić energetyczny stan układu (w przypadku atomu jest to zazwyczaj zmiana, przez elektron, swojej orbity), zostaje on zaabsorbowany. Wtedy jest on spontanicznie re-emitowany albo nie zmieniając swojej częstotliwości albo w kaskadzie, gdzie suma energii fotonów emitowanych jest równa energii pochłoniętego fotonu.
W zależności od geometrii gazu, źródła fotonów i obserwatora zostanie stworzona linia emisyjna lub linia absorpcyjna. Jeżeli gaz znajduje się pomiędzy źródłem fotonów i obserwatorem, zostanie zaobserwowany spadek w natężeniu światła w częstotliwości przypadkowego fotonu, jako że re-emitowane fotony będą zwrócone w innych kierunkach niż oryginalny. Wtedy powstanie linia absorpcyjna. Jeśli obserwator patrzy na gaz, ale bez widzenia źródła fotonów, zobaczy on tylko re-emitowane fotony w wąskim paśmie częstotliwości. I wtedy powstanie linia emisyjna.
W klasycznym eksperymencie Newtona, kiedy światło jest przepuszczane przez szczelinę a potem przez pryzmat, z powodu zależności współczynnik załamania od długości fali (zjawisko nazywane dyspersją w szkle), każda z długości fali jest załamywana w innym kierunku i pierwotne światło rozbija się w wstęgę tęczy. W wyniku tego powstaje oddzielny obraz szczeliny dla każdej długości fali. Kiedy jest badane światło pochodzące od płomienia, zamiast pełnej gamy kolorów otrzymuje się wąskie linie, gdzie każdy z kolorów jest wyodrębniony – są to właśnie linie emisyjne. Każdy pierwiastek ma swój specyficzny zestaw linii i stąd narodziła się dziedzina zwana spektroskopią. Wiele pierwiastków zostało wpierw odkrytych dzięki swoim charakterystycznym liniom emisyjnym: hel, tal, cer, itd.
Powód dla którego pierwiastki mają tak ściśle określony zestaw linii, został po raz pierwszy wytłumaczony przez model atomu Bohra. Kiedy elektrony zmieniają swoją orbitę na mniej energetyczną, różnica energii jest wysyłana jako foton o dokładnie określonej częstotliwości. Dla prostych źródeł światła, stany energetyczne są ściśle określone, jak i częstotliwości obserwowanego światła.
Linie absorpcyjne i emisyjne są wysoce zależne od rodzaju atomów odpowiedzialnych za ich produkcję i dlatego mogą być łatwo użyte do badania składu chemicznego dowolnej substancji zdolnej do przepuszczania przez siebie światło (zazwyczaj jest w tym celu używany gaz). W ten sam sposób można badać skład chemiczny gwiazd i innych ciał niebieskich. Linie spektralne są także silnie zależne od fizycznych własności gazu, co również jest szeroko używane w astronomii. Pionierem takich badań był Joseph von Fraunhofer, od jego nazwiska linie absorpcyjne nazywane bywają liniami Fraunhofera.
Istnieją także inne mechanizmy, kiedy oddziaływanie atomu z fotonem może wyprodukować linię spektralną. W zależności od określonego, fizycznego oddziaływania częstotliwość zaangażowanych fotonów będzie się szeroko wahać i linia będzie obserwowana przez całe widmo, od fal radiowych do promieniowania gamma.
Linia rozszerza się na pewien zakres częstotliwości, zamiast pojawić się tylko dla jednej, konkretnej. Powody tego poszerzania są różne:
- Naturalne poszerzenie: przede wszystkim łączy przebywanie w stanie wzbudzonym z dokładną energią, tak że ten sam stan wzbudzony będzie się nieznacznie różnił energetycznie dla różnych atomów.
- Poszerzenie dopplerowskie: Atomy będą miały różne prędkości, więc będą widziały fotony przesunięte w czerwoną lub niebieską stronę widma, absorbując fotony o różnych energiach z punktu widzenia obserwatora. Im wyższa temperatura gazu, tym większe występują różnice w prędkościach i większe poszerzenie linii.
- Poszerzenie wskutek ciśnienia: Obecność innych atomów przesuwa energię poziomów energetycznych, które są odpowiedzialne za powstawanie linii. Efekt zależy od gęstości gazu.